Matches in SemOpenAlex for { <https://semopenalex.org/work/W3147757130> ?p ?o ?g. }
- W3147757130 endingPage "e1008837" @default.
- W3147757130 startingPage "e1008837" @default.
- W3147757130 abstract "Predictions of COVID-19 case growth and mortality are critical to the decisions of political leaders, businesses, and individuals grappling with the pandemic. This predictive task is challenging due to the novelty of the virus, limited data, and dynamic political and societal responses. We embed a Bayesian time series model and a random forest algorithm within an epidemiological compartmental model for empirically grounded COVID-19 predictions. The Bayesian case model fits a location-specific curve to the velocity (first derivative) of the log transformed cumulative case count, borrowing strength across geographic locations and incorporating prior information to obtain a posterior distribution for case trajectories. The compartmental model uses this distribution and predicts deaths using a random forest algorithm trained on COVID-19 data and population-level characteristics, yielding daily projections and interval estimates for cases and deaths in U.S. states. We evaluated the model by training it on progressively longer periods of the pandemic and computing its predictive accuracy over 21-day forecasts. The substantial variation in predicted trajectories and associated uncertainty between states is illustrated by comparing three unique locations: New York, Colorado, and West Virginia. The sophistication and accuracy of this COVID-19 model offer reliable predictions and uncertainty estimates for the current trajectory of the pandemic in the U.S. and provide a platform for future predictions as shifting political and societal responses alter its course." @default.
- W3147757130 created "2021-04-13" @default.
- W3147757130 creator A5009645576 @default.
- W3147757130 creator A5018005755 @default.
- W3147757130 creator A5039905606 @default.
- W3147757130 creator A5048086925 @default.
- W3147757130 creator A5051618172 @default.
- W3147757130 creator A5071696250 @default.
- W3147757130 creator A5078844896 @default.
- W3147757130 creator A5085404468 @default.
- W3147757130 creator A5086708563 @default.
- W3147757130 creator A5087834261 @default.
- W3147757130 date "2021-03-29" @default.
- W3147757130 modified "2023-09-26" @default.
- W3147757130 title "Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model" @default.
- W3147757130 cites W2016210396 @default.
- W3147757130 cites W2129018774 @default.
- W3147757130 cites W2136829296 @default.
- W3147757130 cites W2560136348 @default.
- W3147757130 cites W2911964244 @default.
- W3147757130 cites W3003573988 @default.
- W3147757130 cites W3005301080 @default.
- W3147757130 cites W3006028839 @default.
- W3147757130 cites W3006914768 @default.
- W3147757130 cites W3007047180 @default.
- W3147757130 cites W3007602081 @default.
- W3147757130 cites W3008049045 @default.
- W3147757130 cites W3008294222 @default.
- W3147757130 cites W3008786256 @default.
- W3147757130 cites W3008790667 @default.
- W3147757130 cites W3008842543 @default.
- W3147757130 cites W3009041394 @default.
- W3147757130 cites W3009468976 @default.
- W3147757130 cites W3009820440 @default.
- W3147757130 cites W3009876049 @default.
- W3147757130 cites W3009916383 @default.
- W3147757130 cites W3009946390 @default.
- W3147757130 cites W3010071617 @default.
- W3147757130 cites W3010131837 @default.
- W3147757130 cites W3010693502 @default.
- W3147757130 cites W3010760459 @default.
- W3147757130 cites W3010952109 @default.
- W3147757130 cites W3012012492 @default.
- W3147757130 cites W3012272607 @default.
- W3147757130 cites W3012280468 @default.
- W3147757130 cites W3012284084 @default.
- W3147757130 cites W3012789146 @default.
- W3147757130 cites W3012916185 @default.
- W3147757130 cites W3012922240 @default.
- W3147757130 cites W3012928787 @default.
- W3147757130 cites W3012932413 @default.
- W3147757130 cites W3012998815 @default.
- W3147757130 cites W3013056994 @default.
- W3147757130 cites W3013360115 @default.
- W3147757130 cites W3013566370 @default.
- W3147757130 cites W3013580552 @default.
- W3147757130 cites W3013594674 @default.
- W3147757130 cites W3013627785 @default.
- W3147757130 cites W3013649595 @default.
- W3147757130 cites W3013893137 @default.
- W3147757130 cites W3014122834 @default.
- W3147757130 cites W3014145608 @default.
- W3147757130 cites W3014464492 @default.
- W3147757130 cites W3014550480 @default.
- W3147757130 cites W3014648361 @default.
- W3147757130 cites W3014654669 @default.
- W3147757130 cites W3014667363 @default.
- W3147757130 cites W3015185421 @default.
- W3147757130 cites W3015227158 @default.
- W3147757130 cites W3015234113 @default.
- W3147757130 cites W3015266504 @default.
- W3147757130 cites W3015279306 @default.
- W3147757130 cites W3015300108 @default.
- W3147757130 cites W3015322376 @default.
- W3147757130 cites W3015351983 @default.
- W3147757130 cites W3015464348 @default.
- W3147757130 cites W3015623674 @default.
- W3147757130 cites W3015777565 @default.
- W3147757130 cites W3015952469 @default.
- W3147757130 cites W3015988827 @default.
- W3147757130 cites W3016514842 @default.
- W3147757130 cites W3016552450 @default.
- W3147757130 cites W3016668033 @default.
- W3147757130 cites W3016966855 @default.
- W3147757130 cites W3017136590 @default.
- W3147757130 cites W3017267196 @default.
- W3147757130 cites W3017787557 @default.
- W3147757130 cites W3017843887 @default.
- W3147757130 cites W3017940157 @default.
- W3147757130 cites W3018422079 @default.
- W3147757130 cites W3018939634 @default.
- W3147757130 cites W3019197760 @default.
- W3147757130 cites W3019674250 @default.
- W3147757130 cites W3020383891 @default.
- W3147757130 cites W3020705943 @default.
- W3147757130 cites W3032971139 @default.
- W3147757130 cites W3071964420 @default.
- W3147757130 cites W3082144192 @default.