Matches in SemOpenAlex for { <https://semopenalex.org/work/W3147906033> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W3147906033 abstract "To improve the accuracy of short-term(0–12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System(HAPS), has been implemented in Shenzhen, China. The forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting(WRF-ARW)model and the Advanced Regional Prediction System(ARPS) three-dimensional variational data assimilation(3DVAR) package. It is capable of assimilating radar reflectivity and radial velocity data from multiple Doppler radars as well as surface automatic weather station(AWS) data. Experiments are designed to evaluate the impacts of data assimilation on quantitative precipitation forecasting(QPF) by studying a heavy rainfall event in southern China. The forecasts from these experiments are verified against radar, surface, and precipitation observations. Comparison of echo structure and accumulated precipitation suggests that radar data assimilation is useful in improving the short-term forecast by capturing the location and orientation of the band of accumulated rainfall. The assimilation of radar data improves the short-term precipitation forecast skill by up to9 hours by producing more convection. The slight but generally positive impact that surface AWS data has on the forecast of near-surface variables can last up to 6–9 hours. The assimilation of AWS observations alone has some benefit for improving the Fractions Skill Score(FSS) and bias scores; when radar data are assimilated, the additional AWS data may increase the degree of rainfall overprediction." @default.
- W3147906033 created "2021-04-13" @default.
- W3147906033 creator A5091534836 @default.
- W3147906033 date "2015-01-01" @default.
- W3147906033 modified "2023-09-25" @default.
- W3147906033 title "Evaluation of Radar and Automatic Weather Station Data Assimilation for a Heavy Rainfall Event in Southern China" @default.
- W3147906033 hasPublicationYear "2015" @default.
- W3147906033 type Work @default.
- W3147906033 sameAs 3147906033 @default.
- W3147906033 citedByCount "0" @default.
- W3147906033 crossrefType "journal-article" @default.
- W3147906033 hasAuthorship W3147906033A5091534836 @default.
- W3147906033 hasConcept C107054158 @default.
- W3147906033 hasConcept C127313418 @default.
- W3147906033 hasConcept C133204551 @default.
- W3147906033 hasConcept C140178040 @default.
- W3147906033 hasConcept C153294291 @default.
- W3147906033 hasConcept C205649164 @default.
- W3147906033 hasConcept C24552861 @default.
- W3147906033 hasConcept C2778559676 @default.
- W3147906033 hasConcept C39432304 @default.
- W3147906033 hasConcept C41008148 @default.
- W3147906033 hasConcept C49204034 @default.
- W3147906033 hasConcept C554190296 @default.
- W3147906033 hasConcept C76155785 @default.
- W3147906033 hasConcept C92237259 @default.
- W3147906033 hasConceptScore W3147906033C107054158 @default.
- W3147906033 hasConceptScore W3147906033C127313418 @default.
- W3147906033 hasConceptScore W3147906033C133204551 @default.
- W3147906033 hasConceptScore W3147906033C140178040 @default.
- W3147906033 hasConceptScore W3147906033C153294291 @default.
- W3147906033 hasConceptScore W3147906033C205649164 @default.
- W3147906033 hasConceptScore W3147906033C24552861 @default.
- W3147906033 hasConceptScore W3147906033C2778559676 @default.
- W3147906033 hasConceptScore W3147906033C39432304 @default.
- W3147906033 hasConceptScore W3147906033C41008148 @default.
- W3147906033 hasConceptScore W3147906033C49204034 @default.
- W3147906033 hasConceptScore W3147906033C554190296 @default.
- W3147906033 hasConceptScore W3147906033C76155785 @default.
- W3147906033 hasConceptScore W3147906033C92237259 @default.
- W3147906033 hasLocation W31479060331 @default.
- W3147906033 hasOpenAccess W3147906033 @default.
- W3147906033 hasPrimaryLocation W31479060331 @default.
- W3147906033 hasRelatedWork W1557857789 @default.
- W3147906033 hasRelatedWork W1880433501 @default.
- W3147906033 hasRelatedWork W1965607322 @default.
- W3147906033 hasRelatedWork W1972251082 @default.
- W3147906033 hasRelatedWork W2022629169 @default.
- W3147906033 hasRelatedWork W2025504100 @default.
- W3147906033 hasRelatedWork W2085731157 @default.
- W3147906033 hasRelatedWork W2161317467 @default.
- W3147906033 hasRelatedWork W2199947638 @default.
- W3147906033 hasRelatedWork W2364021910 @default.
- W3147906033 hasRelatedWork W2366581869 @default.
- W3147906033 hasRelatedWork W2525201247 @default.
- W3147906033 hasRelatedWork W2781666583 @default.
- W3147906033 hasRelatedWork W2942404852 @default.
- W3147906033 hasRelatedWork W3012128377 @default.
- W3147906033 hasRelatedWork W3015208984 @default.
- W3147906033 hasRelatedWork W3015250292 @default.
- W3147906033 hasRelatedWork W3176732330 @default.
- W3147906033 hasRelatedWork W948520970 @default.
- W3147906033 hasRelatedWork W2962880654 @default.
- W3147906033 isParatext "false" @default.
- W3147906033 isRetracted "false" @default.
- W3147906033 magId "3147906033" @default.
- W3147906033 workType "article" @default.