Matches in SemOpenAlex for { <https://semopenalex.org/work/W3147967050> ?p ?o ?g. }
- W3147967050 abstract "This paper proposes a two-stage data-driven methodology in condition monitoring (CM) of wind turbines (WTs). In the first stage, a fast and powerful network, namely a parallel generative adversarial network (PGAN) is proposed to resolve the problem of limited available information by generating artificial data. In the second stage, a robust deep network is designed based on a one-module Gabor filter oriented convolutional neural network and reformulation of a new loss function, namely robust deep Gabor network (RDGN). The experimental dataset of 3MW wind turbines in Ireland is used to verify the effectiveness of the proposed method and demonstrate the superiority of the proposed two-stage method in comparison with several state-of-the-art methods in terms of accuracy and reliability." @default.
- W3147967050 created "2021-04-13" @default.
- W3147967050 creator A5012336081 @default.
- W3147967050 creator A5018295351 @default.
- W3147967050 creator A5019512155 @default.
- W3147967050 creator A5044201204 @default.
- W3147967050 creator A5051783534 @default.
- W3147967050 creator A5065735797 @default.
- W3147967050 date "2020-12-16" @default.
- W3147967050 modified "2023-10-18" @default.
- W3147967050 title "Two-Stage Deep Learning-based Wind Turbine Condition Monitoring Using SCADA Data" @default.
- W3147967050 cites W1977773158 @default.
- W3147967050 cites W2022995384 @default.
- W3147967050 cites W2061276788 @default.
- W3147967050 cites W2086744501 @default.
- W3147967050 cites W2163984882 @default.
- W3147967050 cites W2460480128 @default.
- W3147967050 cites W2465990047 @default.
- W3147967050 cites W2513938116 @default.
- W3147967050 cites W2523553285 @default.
- W3147967050 cites W2589785637 @default.
- W3147967050 cites W2591934927 @default.
- W3147967050 cites W2610691757 @default.
- W3147967050 cites W2761148314 @default.
- W3147967050 cites W2788339528 @default.
- W3147967050 cites W2808496542 @default.
- W3147967050 cites W2895539666 @default.
- W3147967050 cites W2896784509 @default.
- W3147967050 cites W2899228279 @default.
- W3147967050 cites W2904851779 @default.
- W3147967050 cites W2908062660 @default.
- W3147967050 cites W2953885557 @default.
- W3147967050 cites W2954616559 @default.
- W3147967050 cites W2963410812 @default.
- W3147967050 cites W2965399094 @default.
- W3147967050 cites W2965745165 @default.
- W3147967050 cites W2965939572 @default.
- W3147967050 cites W2971162753 @default.
- W3147967050 cites W2993533229 @default.
- W3147967050 cites W3004437308 @default.
- W3147967050 cites W3015338123 @default.
- W3147967050 cites W3038702313 @default.
- W3147967050 cites W3087768550 @default.
- W3147967050 doi "https://doi.org/10.1109/pedes49360.2020.9379393" @default.
- W3147967050 hasPublicationYear "2020" @default.
- W3147967050 type Work @default.
- W3147967050 sameAs 3147967050 @default.
- W3147967050 citedByCount "5" @default.
- W3147967050 countsByYear W31479670502021 @default.
- W3147967050 countsByYear W31479670502022 @default.
- W3147967050 countsByYear W31479670502023 @default.
- W3147967050 crossrefType "proceedings-article" @default.
- W3147967050 hasAuthorship W3147967050A5012336081 @default.
- W3147967050 hasAuthorship W3147967050A5018295351 @default.
- W3147967050 hasAuthorship W3147967050A5019512155 @default.
- W3147967050 hasAuthorship W3147967050A5044201204 @default.
- W3147967050 hasAuthorship W3147967050A5051783534 @default.
- W3147967050 hasAuthorship W3147967050A5065735797 @default.
- W3147967050 hasConcept C108583219 @default.
- W3147967050 hasConcept C113863187 @default.
- W3147967050 hasConcept C119599485 @default.
- W3147967050 hasConcept C119857082 @default.
- W3147967050 hasConcept C121332964 @default.
- W3147967050 hasConcept C124101348 @default.
- W3147967050 hasConcept C127413603 @default.
- W3147967050 hasConcept C146357865 @default.
- W3147967050 hasConcept C151730666 @default.
- W3147967050 hasConcept C153180895 @default.
- W3147967050 hasConcept C154945302 @default.
- W3147967050 hasConcept C163258240 @default.
- W3147967050 hasConcept C2775846686 @default.
- W3147967050 hasConcept C2778449969 @default.
- W3147967050 hasConcept C2988773926 @default.
- W3147967050 hasConcept C41008148 @default.
- W3147967050 hasConcept C43214815 @default.
- W3147967050 hasConcept C50644808 @default.
- W3147967050 hasConcept C62520636 @default.
- W3147967050 hasConcept C78519656 @default.
- W3147967050 hasConcept C78600449 @default.
- W3147967050 hasConcept C81363708 @default.
- W3147967050 hasConcept C86803240 @default.
- W3147967050 hasConceptScore W3147967050C108583219 @default.
- W3147967050 hasConceptScore W3147967050C113863187 @default.
- W3147967050 hasConceptScore W3147967050C119599485 @default.
- W3147967050 hasConceptScore W3147967050C119857082 @default.
- W3147967050 hasConceptScore W3147967050C121332964 @default.
- W3147967050 hasConceptScore W3147967050C124101348 @default.
- W3147967050 hasConceptScore W3147967050C127413603 @default.
- W3147967050 hasConceptScore W3147967050C146357865 @default.
- W3147967050 hasConceptScore W3147967050C151730666 @default.
- W3147967050 hasConceptScore W3147967050C153180895 @default.
- W3147967050 hasConceptScore W3147967050C154945302 @default.
- W3147967050 hasConceptScore W3147967050C163258240 @default.
- W3147967050 hasConceptScore W3147967050C2775846686 @default.
- W3147967050 hasConceptScore W3147967050C2778449969 @default.
- W3147967050 hasConceptScore W3147967050C2988773926 @default.
- W3147967050 hasConceptScore W3147967050C41008148 @default.
- W3147967050 hasConceptScore W3147967050C43214815 @default.
- W3147967050 hasConceptScore W3147967050C50644808 @default.
- W3147967050 hasConceptScore W3147967050C62520636 @default.