Matches in SemOpenAlex for { <https://semopenalex.org/work/W3148107757> ?p ?o ?g. }
- W3148107757 endingPage "120492" @default.
- W3148107757 startingPage "120492" @default.
- W3148107757 abstract "Offshore wind power is one of the fastest-growing energy sources worldwide, which is environmentally friendly and economically competitive. Short-term time series wind speed forecasts are extremely significant for proper and efficient offshore wind energy evaluation and in turn, benefit wind farm owner, grid operators as well as end customers. In this study, a Seasonal Auto-Regression Integrated Moving Average (SARIMA) model is proposed to predict hourly-measured wind speeds in the coastal/offshore area of Scotland. The used datasets consist of three wind speed time series collected at different elevations from a coastal met mast, which was designed to serve for a demonstration offshore wind turbine. To verify SARIMA’s performance, the developed predictive model was further compared with the newly developed deep-learning-based algorithms of Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM). Regardless of the recent development of computational power has triggered more advanced machine learning algorithms, the proposed SARIMA model has shown its outperformance in the accuracy of forecasting future lags of offshore wind speeds along with time series. The SARIMA model provided the highest accuracy and robust healthiness among all the three tested predictive models based on corresponding datasets and assessed forecasting horizons." @default.
- W3148107757 created "2021-04-13" @default.
- W3148107757 creator A5006763665 @default.
- W3148107757 creator A5035420818 @default.
- W3148107757 creator A5060165450 @default.
- W3148107757 date "2021-07-01" @default.
- W3148107757 modified "2023-10-11" @default.
- W3148107757 title "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM" @default.
- W3148107757 cites W1185746543 @default.
- W3148107757 cites W1452761747 @default.
- W3148107757 cites W1514832573 @default.
- W3148107757 cites W1923027492 @default.
- W3148107757 cites W1977398352 @default.
- W3148107757 cites W1984061847 @default.
- W3148107757 cites W2006493581 @default.
- W3148107757 cites W2064675550 @default.
- W3148107757 cites W2079631764 @default.
- W3148107757 cites W2081760759 @default.
- W3148107757 cites W2083620425 @default.
- W3148107757 cites W2111395484 @default.
- W3148107757 cites W2153255175 @default.
- W3148107757 cites W2153263933 @default.
- W3148107757 cites W2171654189 @default.
- W3148107757 cites W2198492426 @default.
- W3148107757 cites W2254535312 @default.
- W3148107757 cites W2280154071 @default.
- W3148107757 cites W2284726324 @default.
- W3148107757 cites W2286725013 @default.
- W3148107757 cites W2487967714 @default.
- W3148107757 cites W2513964223 @default.
- W3148107757 cites W2521080030 @default.
- W3148107757 cites W2566003805 @default.
- W3148107757 cites W2582163918 @default.
- W3148107757 cites W2611273431 @default.
- W3148107757 cites W2617244595 @default.
- W3148107757 cites W2624832571 @default.
- W3148107757 cites W2716001926 @default.
- W3148107757 cites W2729912483 @default.
- W3148107757 cites W2757997884 @default.
- W3148107757 cites W2775425027 @default.
- W3148107757 cites W2784210199 @default.
- W3148107757 cites W2792156471 @default.
- W3148107757 cites W2792616493 @default.
- W3148107757 cites W2793187554 @default.
- W3148107757 cites W2796072231 @default.
- W3148107757 cites W2801821709 @default.
- W3148107757 cites W2905528277 @default.
- W3148107757 cites W2910279921 @default.
- W3148107757 cites W2920873814 @default.
- W3148107757 cites W2924950036 @default.
- W3148107757 cites W2999868636 @default.
- W3148107757 cites W3018589140 @default.
- W3148107757 cites W3023221330 @default.
- W3148107757 cites W3044684756 @default.
- W3148107757 cites W3044963726 @default.
- W3148107757 cites W3049349475 @default.
- W3148107757 cites W3095043043 @default.
- W3148107757 cites W428954969 @default.
- W3148107757 doi "https://doi.org/10.1016/j.energy.2021.120492" @default.
- W3148107757 hasPublicationYear "2021" @default.
- W3148107757 type Work @default.
- W3148107757 sameAs 3148107757 @default.
- W3148107757 citedByCount "133" @default.
- W3148107757 countsByYear W31481077572021 @default.
- W3148107757 countsByYear W31481077572022 @default.
- W3148107757 countsByYear W31481077572023 @default.
- W3148107757 crossrefType "journal-article" @default.
- W3148107757 hasAuthorship W3148107757A5006763665 @default.
- W3148107757 hasAuthorship W3148107757A5035420818 @default.
- W3148107757 hasAuthorship W3148107757A5060165450 @default.
- W3148107757 hasBestOaLocation W31481077572 @default.
- W3148107757 hasConcept C119599485 @default.
- W3148107757 hasConcept C119857082 @default.
- W3148107757 hasConcept C121332964 @default.
- W3148107757 hasConcept C127413603 @default.
- W3148107757 hasConcept C13280743 @default.
- W3148107757 hasConcept C151406439 @default.
- W3148107757 hasConcept C153294291 @default.
- W3148107757 hasConcept C161067210 @default.
- W3148107757 hasConcept C162284963 @default.
- W3148107757 hasConcept C163258240 @default.
- W3148107757 hasConcept C187320778 @default.
- W3148107757 hasConcept C187691185 @default.
- W3148107757 hasConcept C199104240 @default.
- W3148107757 hasConcept C205649164 @default.
- W3148107757 hasConcept C24338571 @default.
- W3148107757 hasConcept C2778449969 @default.
- W3148107757 hasConcept C2781084341 @default.
- W3148107757 hasConcept C39432304 @default.
- W3148107757 hasConcept C41008148 @default.
- W3148107757 hasConcept C61797465 @default.
- W3148107757 hasConcept C62520636 @default.
- W3148107757 hasConcept C78519656 @default.
- W3148107757 hasConcept C78600449 @default.
- W3148107757 hasConcept C8735168 @default.
- W3148107757 hasConcept C89227174 @default.
- W3148107757 hasConceptScore W3148107757C119599485 @default.
- W3148107757 hasConceptScore W3148107757C119857082 @default.