Matches in SemOpenAlex for { <https://semopenalex.org/work/W3148195658> ?p ?o ?g. }
- W3148195658 abstract "Abstract Background Variable selection is an important issue in many fields such as public health and psychology. Researchers often gather data on many variables of interest and then are faced with two challenging goals: building an accurate model with few predictors, and making probabilistic statements (inference) about this model. Unfortunately, it is currently difficult to attain these goals with the two most popular methods for variable selection methods: stepwise selection and LASSO. The aim of the present study was to demonstrate the use predictive projection feature selection – a novel Bayesian variable selection method that delivers both predictive power and inference. We apply predictive projection to a sample of New Zealand young adults, use it to build a compact model for predicting well-being, and compare it to other variable selection methods. Methods The sample consisted of 791 young adults (ages 18 to 25, 71.7% female) living in Dunedin, New Zealand who had taken part in the Daily Life Study in 2013–2014. Participants completed a 13-day online daily diary assessment of their well-being and a range of lifestyle variables (e.g., sleep, physical activity, diet variables). The participants’ diary data was averaged across days and analyzed cross-sectionally to identify predictors of average flourishing. Predictive projection was used to select as few predictors as necessary to approximate the predictive accuracy of a reference model with all 28 predictors. Predictive projection was also compared to other variable selection methods, including stepwise selection and LASSO. Results Three predictors were sufficient to approximate the predictions of the reference model: higher sleep quality, less trouble concentrating, and more servings of fruit. The performance of the projected submodel generalized well. Compared to other variable selection methods, predictive projection produced models with either matching or slightly worse performance; however, this performance was achieved with much fewer predictors. Conclusion Predictive projection was used to efficiently arrive at a compact model with good predictive accuracy. The predictors selected into the submodel – felt refreshed after waking up, had less trouble concentrating, and ate more servings of fruit – were all theoretically meaningful. Our findings showcase the utility of predictive projection in a practical variable selection problem." @default.
- W3148195658 created "2021-04-13" @default.
- W3148195658 creator A5015573785 @default.
- W3148195658 creator A5023001331 @default.
- W3148195658 creator A5048202914 @default.
- W3148195658 creator A5078955184 @default.
- W3148195658 date "2021-04-09" @default.
- W3148195658 modified "2023-10-01" @default.
- W3148195658 title "The value of Bayesian predictive projection for variable selection: an example of selecting lifestyle predictors of young adult well-being" @default.
- W3148195658 cites W1599304806 @default.
- W3148195658 cites W1885924565 @default.
- W3148195658 cites W1920546258 @default.
- W3148195658 cites W1940090105 @default.
- W3148195658 cites W1964594273 @default.
- W3148195658 cites W1985497040 @default.
- W3148195658 cites W1992151683 @default.
- W3148195658 cites W1992646537 @default.
- W3148195658 cites W1993889364 @default.
- W3148195658 cites W2007582684 @default.
- W3148195658 cites W2015928143 @default.
- W3148195658 cites W2019300001 @default.
- W3148195658 cites W2027224088 @default.
- W3148195658 cites W2037695402 @default.
- W3148195658 cites W2037755177 @default.
- W3148195658 cites W2037808094 @default.
- W3148195658 cites W2068122209 @default.
- W3148195658 cites W2077848245 @default.
- W3148195658 cites W2085331666 @default.
- W3148195658 cites W2085890860 @default.
- W3148195658 cites W2086687228 @default.
- W3148195658 cites W2088223830 @default.
- W3148195658 cites W2091110954 @default.
- W3148195658 cites W2122379076 @default.
- W3148195658 cites W2122825543 @default.
- W3148195658 cites W2134176302 @default.
- W3148195658 cites W2135046866 @default.
- W3148195658 cites W2137895888 @default.
- W3148195658 cites W2139585594 @default.
- W3148195658 cites W2142635246 @default.
- W3148195658 cites W2142806020 @default.
- W3148195658 cites W2147900775 @default.
- W3148195658 cites W2149082029 @default.
- W3148195658 cites W2166140021 @default.
- W3148195658 cites W2170048175 @default.
- W3148195658 cites W2182148536 @default.
- W3148195658 cites W2203714058 @default.
- W3148195658 cites W2213612645 @default.
- W3148195658 cites W2258957433 @default.
- W3148195658 cites W2272483892 @default.
- W3148195658 cites W2284729062 @default.
- W3148195658 cites W2288609155 @default.
- W3148195658 cites W2472912389 @default.
- W3148195658 cites W2566302852 @default.
- W3148195658 cites W2577537660 @default.
- W3148195658 cites W2579465658 @default.
- W3148195658 cites W2582290224 @default.
- W3148195658 cites W2583989724 @default.
- W3148195658 cites W2749069611 @default.
- W3148195658 cites W2753599755 @default.
- W3148195658 cites W2768211363 @default.
- W3148195658 cites W2773400618 @default.
- W3148195658 cites W2777798779 @default.
- W3148195658 cites W2782176193 @default.
- W3148195658 cites W2785607024 @default.
- W3148195658 cites W2789733307 @default.
- W3148195658 cites W2790917919 @default.
- W3148195658 cites W2794718423 @default.
- W3148195658 cites W2796809483 @default.
- W3148195658 cites W2808252767 @default.
- W3148195658 cites W2890947206 @default.
- W3148195658 cites W2897970326 @default.
- W3148195658 cites W2904925972 @default.
- W3148195658 cites W310010663 @default.
- W3148195658 cites W3104887532 @default.
- W3148195658 cites W3110745131 @default.
- W3148195658 cites W3126128017 @default.
- W3148195658 cites W4211209158 @default.
- W3148195658 cites W4248989428 @default.
- W3148195658 cites W429766147 @default.
- W3148195658 doi "https://doi.org/10.1186/s12889-021-10690-3" @default.
- W3148195658 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8033696" @default.
- W3148195658 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33836714" @default.
- W3148195658 hasPublicationYear "2021" @default.
- W3148195658 type Work @default.
- W3148195658 sameAs 3148195658 @default.
- W3148195658 citedByCount "6" @default.
- W3148195658 countsByYear W31481956582021 @default.
- W3148195658 countsByYear W31481956582022 @default.
- W3148195658 countsByYear W31481956582023 @default.
- W3148195658 crossrefType "journal-article" @default.
- W3148195658 hasAuthorship W3148195658A5015573785 @default.
- W3148195658 hasAuthorship W3148195658A5023001331 @default.
- W3148195658 hasAuthorship W3148195658A5048202914 @default.
- W3148195658 hasAuthorship W3148195658A5078955184 @default.
- W3148195658 hasBestOaLocation W31481956581 @default.
- W3148195658 hasConcept C105795698 @default.
- W3148195658 hasConcept C111472728 @default.
- W3148195658 hasConcept C119857082 @default.
- W3148195658 hasConcept C134306372 @default.
- W3148195658 hasConcept C136764020 @default.