Matches in SemOpenAlex for { <https://semopenalex.org/work/W3148199162> ?p ?o ?g. }
- W3148199162 endingPage "115943" @default.
- W3148199162 startingPage "115943" @default.
- W3148199162 abstract "Abdominal aortic calcification (AAC) identified on dual-energy x-ray absorptiometry (DXA) vertebral fracture assessment (VFA) lateral spine images is predictive of cardiovascular outcomes, but is time-consuming to perform manually. Whether this procedure can be automated using convolutional neural networks (CNNs), a class of machine learning algorithms used for image processing, has not been widely investigated. Using the Province of Manitoba Bone Density Program DXA database, we selected a random sample of 1100 VFA images from individuals qualifying for VFA as part of their osteoporosis assessment. For each scan, AAC was manually scored using the 24-point semi-quantitative scale and categorized as low (score < 2), moderate (score 2 to <6), or high (score ≥ 6). An ensemble consisting of two CNNs was developed, by training and evaluating separately on single-energy and dual-energy images. AAC prediction was performed using the mean AAC score of the two models. Mean (SD) age of the cohort was 75.5 (6.7) years, 95.5% were female. Training (N = 770, 70%), validation (N = 110, 10%) and test sets (N = 220, 20%) were well-balanced with respect to baseline characteristics and AAC scores. For the test set, the Pearson correlation between the CNN-predicted and human-labelled scores was 0.93 with intraclass correlation coefficient for absolute agreement 0.91 (95% CI 0.89–0.93). Kappa for AAC category agreement (prevalence- and bias-adjusted, ordinal scale) was 0.71 (95% CI 0.65–0.78). There was complete separation of the low and high categories, without any low AAC score scans predicted to be high and vice versa. CNNs are capable of detecting AAC in VFA images, with high correlation between the human and predicted scores. These preliminary results suggest CNNs are a promising method for automatically detecting and quantifying AAC." @default.
- W3148199162 created "2021-04-13" @default.
- W3148199162 creator A5023219125 @default.
- W3148199162 creator A5037149404 @default.
- W3148199162 creator A5043200227 @default.
- W3148199162 creator A5043266869 @default.
- W3148199162 creator A5062383019 @default.
- W3148199162 creator A5075674266 @default.
- W3148199162 date "2021-07-01" @default.
- W3148199162 modified "2023-10-12" @default.
- W3148199162 title "Machine learning for automated abdominal aortic calcification scoring of DXA vertebral fracture assessment images: A pilot study" @default.
- W3148199162 cites W1921872303 @default.
- W3148199162 cites W1973207565 @default.
- W3148199162 cites W2002686758 @default.
- W3148199162 cites W2028271419 @default.
- W3148199162 cites W2031390524 @default.
- W3148199162 cites W2034953297 @default.
- W3148199162 cites W2073293971 @default.
- W3148199162 cites W2102059955 @default.
- W3148199162 cites W2108848153 @default.
- W3148199162 cites W2111800387 @default.
- W3148199162 cites W2165447454 @default.
- W3148199162 cites W2396493631 @default.
- W3148199162 cites W2493059890 @default.
- W3148199162 cites W2581392686 @default.
- W3148199162 cites W2605743908 @default.
- W3148199162 cites W2713644864 @default.
- W3148199162 cites W2738150505 @default.
- W3148199162 cites W2758966222 @default.
- W3148199162 cites W2789956930 @default.
- W3148199162 cites W2811095288 @default.
- W3148199162 cites W2900859397 @default.
- W3148199162 cites W2934904989 @default.
- W3148199162 cites W2940021442 @default.
- W3148199162 cites W2948732750 @default.
- W3148199162 cites W2956836710 @default.
- W3148199162 cites W2963446712 @default.
- W3148199162 cites W2974207016 @default.
- W3148199162 cites W3027383694 @default.
- W3148199162 cites W3048664790 @default.
- W3148199162 cites W3101156210 @default.
- W3148199162 cites W3102564565 @default.
- W3148199162 cites W3121223411 @default.
- W3148199162 cites W4211141844 @default.
- W3148199162 doi "https://doi.org/10.1016/j.bone.2021.115943" @default.
- W3148199162 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33836309" @default.
- W3148199162 hasPublicationYear "2021" @default.
- W3148199162 type Work @default.
- W3148199162 sameAs 3148199162 @default.
- W3148199162 citedByCount "9" @default.
- W3148199162 countsByYear W31481991622022 @default.
- W3148199162 countsByYear W31481991622023 @default.
- W3148199162 crossrefType "journal-article" @default.
- W3148199162 hasAuthorship W3148199162A5023219125 @default.
- W3148199162 hasAuthorship W3148199162A5037149404 @default.
- W3148199162 hasAuthorship W3148199162A5043200227 @default.
- W3148199162 hasAuthorship W3148199162A5043266869 @default.
- W3148199162 hasAuthorship W3148199162A5062383019 @default.
- W3148199162 hasAuthorship W3148199162A5075674266 @default.
- W3148199162 hasConcept C104709138 @default.
- W3148199162 hasConcept C105795698 @default.
- W3148199162 hasConcept C117220453 @default.
- W3148199162 hasConcept C126322002 @default.
- W3148199162 hasConcept C126838900 @default.
- W3148199162 hasConcept C154945302 @default.
- W3148199162 hasConcept C163864269 @default.
- W3148199162 hasConcept C171606756 @default.
- W3148199162 hasConcept C2524010 @default.
- W3148199162 hasConcept C2776541429 @default.
- W3148199162 hasConcept C2776886416 @default.
- W3148199162 hasConcept C2778724333 @default.
- W3148199162 hasConcept C2989005 @default.
- W3148199162 hasConcept C2994545362 @default.
- W3148199162 hasConcept C33923547 @default.
- W3148199162 hasConcept C41008148 @default.
- W3148199162 hasConcept C70410870 @default.
- W3148199162 hasConcept C71924100 @default.
- W3148199162 hasConcept C72563966 @default.
- W3148199162 hasConceptScore W3148199162C104709138 @default.
- W3148199162 hasConceptScore W3148199162C105795698 @default.
- W3148199162 hasConceptScore W3148199162C117220453 @default.
- W3148199162 hasConceptScore W3148199162C126322002 @default.
- W3148199162 hasConceptScore W3148199162C126838900 @default.
- W3148199162 hasConceptScore W3148199162C154945302 @default.
- W3148199162 hasConceptScore W3148199162C163864269 @default.
- W3148199162 hasConceptScore W3148199162C171606756 @default.
- W3148199162 hasConceptScore W3148199162C2524010 @default.
- W3148199162 hasConceptScore W3148199162C2776541429 @default.
- W3148199162 hasConceptScore W3148199162C2776886416 @default.
- W3148199162 hasConceptScore W3148199162C2778724333 @default.
- W3148199162 hasConceptScore W3148199162C2989005 @default.
- W3148199162 hasConceptScore W3148199162C2994545362 @default.
- W3148199162 hasConceptScore W3148199162C33923547 @default.
- W3148199162 hasConceptScore W3148199162C41008148 @default.
- W3148199162 hasConceptScore W3148199162C70410870 @default.
- W3148199162 hasConceptScore W3148199162C71924100 @default.
- W3148199162 hasConceptScore W3148199162C72563966 @default.
- W3148199162 hasLocation W31481991621 @default.