Matches in SemOpenAlex for { <https://semopenalex.org/work/W3148244162> ?p ?o ?g. }
- W3148244162 abstract "Critical thresholds in habitat reduction besides multiple threats such as climate change are leading to a biodiversity decline (Newbold et al. 2016; Betts et al. 2017; Melo et al. 2018; Roque et al. 2018), consistently predicted in multiple scenarios (Jenkins 2003; Thomas et al. 2004; Pereira et al. 2010; Bellard et al. 2012). Accordingly, extinction rates of species are now 8 to 100 times higher than those previously known (Ceballos et al. 2015). This biodiversity crisis imposes new challenges on conservation planning for prioritizing locations and efforts to guarantee the persistence of species and ecosystems over time (Meir et al. 2004; Wilson et al. 2016; Reside et al. 2018). The most common initiatives in conservation planning for safeguarding biodiversity and counteract biodiversity decline continue to be the expansion of the protected areas (PAs) systems (Jenkins & Joppa 2009; Watson et al. 2014). However, in a world increasingly dominated by human transformation processes (Ellis & Ramankutty 2008; Ellis 2011) and with limited economic resources for conservation (Wilson et al. 2009; Waldron et al. 2013), it is critical to expand this view and integrate conservation practices in human-modified landscapes (Ellis 2013).The adequate allocation of the limited resources available for biodiversity conservation is crucial for achieving global, national, and sub-national conservation targets (Dobrovolski et al. 2014; Pouzols et al. 2014; Venter et al. 2014; Di Marco et al. 2016; Espirito-Santo et al. 2017). Consequently, a critical issue in spatial conservation prioritization should be to minimize the uncertainty about what and where to conserve, in order to maximize the success of conservation planning (Regan et al. 2009; Wilson et al. 2009). Thus, I tested in this thesis how robustness of the planning process may be increased by applying the three principles proposed in the systematic conservation planning framework, (1) representation, (2) persistence, and (3) cost-efficiency (Margules & Sarkar 2007), but also by highlighting the variability of the conservation prioritization process to diverse approaches using different information (Langford et al. 2011). I evaluated the impact of several approaches and analyzed the sensitivity of the identification of priority areas for conservation in the Neotropics, one of the most biodiverse regions in the world, and also one with the most urgent needs of identifying conservation priorities. I present a comprehensive spatial conservation prioritization that addressed the composition (8563 spp.), structure (663 ecosystems), and function (5382 ecological groups) of biodiversity, showing the regional variability of conservation priorities according to the biodiversity attribute represented (Chapter 1). Also, I applied different approaches of costs and factors associated with the persistence of Neotropical biodiversity, and framed them in the land-sharing/sparing model to propose possible conservation actions in the region (Chapter 2). Finally, I evaluated multiple variables related to the systematic conservation planning principles, representation, persistence, and cost-efficiency, to analyze what factors better guide conservation priorities in the Neotropics across regional and national levels (Chapter 3).My results showed that Aichi 11 target for conserving 17% of terrestrial biodiversity in the Neotropics cannot be fulfilled with the current PAs. The prioritized areas proposed, as well as PAs, meet on average 60% of conservation targets, but being 60% more efficient in the extent of area selected. I show that in the most threatened biodiversity hotspots, the effectiveness and representativeness of biodiversity depend strictly on the inclusion of new conservation areas. Comparing biodiversity attributes, I found a higher level of surrogacy using a compositional approach explained by the number of biodiversity features and their overlapping levels. However, conservation priorities vary regionally, suggesting that the use of a single biodiversity attribute, may lead to inaccurate selections of conservation priorities (Chapter 1).I also found that costs are more influential in the selection of conservation areas than persistence measures. Using the variability in the priority areas found, we identified regions where land acquisition would be most suitable for conservation and restoration (land-sparing), and areas where conservation agreements would be more appropriate to implement restoration or wildlife-friendly farming conservation strategies (land-sharing) (Chapter 2). Through a sensitivity analysis, we found that representativeness of biodiversity, and particularly the proportion of natural habitats guides conservation priorities at the regional level, while the factors associated with costs and persistence are more critical at the Neotropical level. In the Neotropics, conservation priorities responded to the spatial conservation prioritization model, favoring complementarity and reducing conservation costs (Chapter 3). However, conservation planning at the regional level should consider several mechanisms to guarantee the success of biodiversity protection over time (Chapters 1, 2 and 3).Finally, I concluded that there is no single approach or a combination of them, which cover the whole variability in spatial information on biodiversity, costs, and persistence to conservation. Regional differences in conservation areas selected influence conservation planning differently, consequently leading to identify distinct priorities and conservation actions related. The regional variability in conservation areas selection found indicates more different strategies that should be applied to conservation planning, since biodiversity attributes, and cost and persistence approaches guide the selection differently (Chapters 1 and 2). However, despite variability in conservation areas selection, we could identify priority areas where coincidences over multiple approaches occur (Chapters 1 and 2). In these areas, the uncertainty in defining priority areas is reduced, supporting the definition of more robust conservation priorities and actions by identifying those factors related to conservation areas selection (Chapter 3). These irreplaceable areas were located in critical and threatened global biodiversity hotspots, e.g., the Chaco, the Atlantic forest, the Pantanal, Cerrado, and Caatinga regions in Brazil, and the moist and dry forests of northern Andes (Chapters 1 and 2)." @default.
- W3148244162 created "2021-04-13" @default.
- W3148244162 creator A5036322920 @default.
- W3148244162 creator A5054281299 @default.
- W3148244162 date "2020-07-13" @default.
- W3148244162 modified "2023-09-24" @default.
- W3148244162 title "Improving the identification of priority areas for conserving neotropical biodiversity : assessing uncertainties in spatial conservation prioritization" @default.
- W3148244162 cites W1020648355 @default.
- W3148244162 cites W1484117808 @default.
- W3148244162 cites W1488119176 @default.
- W3148244162 cites W1504282777 @default.
- W3148244162 cites W1517428905 @default.
- W3148244162 cites W1540682446 @default.
- W3148244162 cites W1543298600 @default.
- W3148244162 cites W1546020371 @default.
- W3148244162 cites W1556499793 @default.
- W3148244162 cites W1577399618 @default.
- W3148244162 cites W1590899737 @default.
- W3148244162 cites W1599994642 @default.
- W3148244162 cites W1604317905 @default.
- W3148244162 cites W1608474987 @default.
- W3148244162 cites W1621735046 @default.
- W3148244162 cites W1653330622 @default.
- W3148244162 cites W1741070401 @default.
- W3148244162 cites W1749910228 @default.
- W3148244162 cites W1753293814 @default.
- W3148244162 cites W1801962635 @default.
- W3148244162 cites W1819659760 @default.
- W3148244162 cites W1850989437 @default.
- W3148244162 cites W1869512368 @default.
- W3148244162 cites W1882658170 @default.
- W3148244162 cites W1921273272 @default.
- W3148244162 cites W1936372700 @default.
- W3148244162 cites W1962412349 @default.
- W3148244162 cites W1963600966 @default.
- W3148244162 cites W1964213499 @default.
- W3148244162 cites W1965527419 @default.
- W3148244162 cites W1966861585 @default.
- W3148244162 cites W1967156257 @default.
- W3148244162 cites W1968968439 @default.
- W3148244162 cites W1969344077 @default.
- W3148244162 cites W1969675177 @default.
- W3148244162 cites W1971351853 @default.
- W3148244162 cites W1972121470 @default.
- W3148244162 cites W1975928833 @default.
- W3148244162 cites W1976869099 @default.
- W3148244162 cites W1977505992 @default.
- W3148244162 cites W1980695463 @default.
- W3148244162 cites W1980790806 @default.
- W3148244162 cites W1981291618 @default.
- W3148244162 cites W1981843416 @default.
- W3148244162 cites W1982731973 @default.
- W3148244162 cites W1983240817 @default.
- W3148244162 cites W1983245694 @default.
- W3148244162 cites W1983428281 @default.
- W3148244162 cites W1987256733 @default.
- W3148244162 cites W1988349199 @default.
- W3148244162 cites W1988645439 @default.
- W3148244162 cites W1988718261 @default.
- W3148244162 cites W1988981225 @default.
- W3148244162 cites W1991105669 @default.
- W3148244162 cites W1992991671 @default.
- W3148244162 cites W1996301170 @default.
- W3148244162 cites W1996740690 @default.
- W3148244162 cites W1998961565 @default.
- W3148244162 cites W2001076865 @default.
- W3148244162 cites W2001308893 @default.
- W3148244162 cites W2003331599 @default.
- W3148244162 cites W2003701627 @default.
- W3148244162 cites W2004202852 @default.
- W3148244162 cites W2004511652 @default.
- W3148244162 cites W2005056218 @default.
- W3148244162 cites W2005592943 @default.
- W3148244162 cites W2006428417 @default.
- W3148244162 cites W2010491526 @default.
- W3148244162 cites W2010635848 @default.
- W3148244162 cites W2010971367 @default.
- W3148244162 cites W2013932208 @default.
- W3148244162 cites W2014101946 @default.
- W3148244162 cites W2014708392 @default.
- W3148244162 cites W2015704335 @default.
- W3148244162 cites W2017033322 @default.
- W3148244162 cites W2017285742 @default.
- W3148244162 cites W2019379702 @default.
- W3148244162 cites W2019709307 @default.
- W3148244162 cites W2019751152 @default.
- W3148244162 cites W2020778197 @default.
- W3148244162 cites W2021870657 @default.
- W3148244162 cites W2022485409 @default.
- W3148244162 cites W2025579286 @default.
- W3148244162 cites W2030533122 @default.
- W3148244162 cites W2032388524 @default.
- W3148244162 cites W2033809437 @default.
- W3148244162 cites W2035149717 @default.
- W3148244162 cites W2035652219 @default.
- W3148244162 cites W2035893148 @default.
- W3148244162 cites W2035898274 @default.
- W3148244162 cites W2036058707 @default.
- W3148244162 cites W2036706242 @default.
- W3148244162 cites W2036959347 @default.