Matches in SemOpenAlex for { <https://semopenalex.org/work/W3148283428> ?p ?o ?g. }
- W3148283428 endingPage "155010" @default.
- W3148283428 startingPage "154997" @default.
- W3148283428 abstract "Automatic building extraction based on high-resolution aerial images has important applications in urban planning and environmental management. In recent years advances and performance improvements have been achieved in building extraction through the use of deep learning methods. However, the design of existing models focuses attention to improve accuracy through an overflowing number of parameters and complex structure design, resulting in large computational costs during the learning phase and low inference speed. To address these issues, we propose a new, efficient end-to-end model, called ARC-Net. The model includes residual blocks with asymmetric convolution (RBAC) to reduce the computational cost and to shrink the model size. In addition, dilated convolutions and multi-scale pyramid pooling modules are utilized to enlarge the receptive field and to enhance accuracy. We verify the performance and efficiency of the proposed ARC-Net on the INRIA Aerial Image Labeling dataset and WHU building dataset. Compared to available deep learning models, the proposed ARC-Net demonstrates better segmentation performance with less computational costs. This indicates that the proposed ARC-Net is both effective and efficient in automatic building extraction from high-resolution aerial images." @default.
- W3148283428 created "2021-04-13" @default.
- W3148283428 creator A5014986772 @default.
- W3148283428 creator A5020249309 @default.
- W3148283428 creator A5023250695 @default.
- W3148283428 creator A5055646953 @default.
- W3148283428 creator A5063447635 @default.
- W3148283428 creator A5064312590 @default.
- W3148283428 creator A5066876245 @default.
- W3148283428 creator A5068185110 @default.
- W3148283428 creator A5074461919 @default.
- W3148283428 creator A5079363407 @default.
- W3148283428 date "2020-01-01" @default.
- W3148283428 modified "2023-10-17" @default.
- W3148283428 title "ARC-Net: An Efficient Network for Building Extraction From High-Resolution Aerial Images" @default.
- W3148283428 cites W1745334888 @default.
- W3148283428 cites W1903029394 @default.
- W3148283428 cites W1996901117 @default.
- W3148283428 cites W2000692343 @default.
- W3148283428 cites W2000803298 @default.
- W3148283428 cites W2019038438 @default.
- W3148283428 cites W2027282554 @default.
- W3148283428 cites W2076131212 @default.
- W3148283428 cites W2097117768 @default.
- W3148283428 cites W2112796928 @default.
- W3148283428 cites W2127227873 @default.
- W3148283428 cites W2144552105 @default.
- W3148283428 cites W2161969291 @default.
- W3148283428 cites W2163352848 @default.
- W3148283428 cites W2164598857 @default.
- W3148283428 cites W2194775991 @default.
- W3148283428 cites W2412782625 @default.
- W3148283428 cites W2531409750 @default.
- W3148283428 cites W2559597482 @default.
- W3148283428 cites W2560023338 @default.
- W3148283428 cites W2592939477 @default.
- W3148283428 cites W2609402060 @default.
- W3148283428 cites W2623490820 @default.
- W3148283428 cites W2762439315 @default.
- W3148283428 cites W2775731976 @default.
- W3148283428 cites W2790741584 @default.
- W3148283428 cites W2795635230 @default.
- W3148283428 cites W2886397424 @default.
- W3148283428 cites W2886934227 @default.
- W3148283428 cites W2887469576 @default.
- W3148283428 cites W2897936062 @default.
- W3148283428 cites W2906217354 @default.
- W3148283428 cites W2908320224 @default.
- W3148283428 cites W2914928371 @default.
- W3148283428 cites W2915731581 @default.
- W3148283428 cites W2934268922 @default.
- W3148283428 cites W2938425859 @default.
- W3148283428 cites W2939647427 @default.
- W3148283428 cites W2963125010 @default.
- W3148283428 cites W2963163009 @default.
- W3148283428 cites W2963446712 @default.
- W3148283428 cites W2963881378 @default.
- W3148283428 cites W2964217532 @default.
- W3148283428 cites W2967087542 @default.
- W3148283428 cites W2972623730 @default.
- W3148283428 cites W2981609437 @default.
- W3148283428 cites W2990447979 @default.
- W3148283428 cites W2991441757 @default.
- W3148283428 cites W2991751858 @default.
- W3148283428 cites W3013719693 @default.
- W3148283428 cites W4241468141 @default.
- W3148283428 cites W73112891 @default.
- W3148283428 doi "https://doi.org/10.1109/access.2020.3015701" @default.
- W3148283428 hasPublicationYear "2020" @default.
- W3148283428 type Work @default.
- W3148283428 sameAs 3148283428 @default.
- W3148283428 citedByCount "40" @default.
- W3148283428 countsByYear W31482834282021 @default.
- W3148283428 countsByYear W31482834282022 @default.
- W3148283428 countsByYear W31482834282023 @default.
- W3148283428 crossrefType "journal-article" @default.
- W3148283428 hasAuthorship W3148283428A5014986772 @default.
- W3148283428 hasAuthorship W3148283428A5020249309 @default.
- W3148283428 hasAuthorship W3148283428A5023250695 @default.
- W3148283428 hasAuthorship W3148283428A5055646953 @default.
- W3148283428 hasAuthorship W3148283428A5063447635 @default.
- W3148283428 hasAuthorship W3148283428A5064312590 @default.
- W3148283428 hasAuthorship W3148283428A5066876245 @default.
- W3148283428 hasAuthorship W3148283428A5068185110 @default.
- W3148283428 hasAuthorship W3148283428A5074461919 @default.
- W3148283428 hasAuthorship W3148283428A5079363407 @default.
- W3148283428 hasBestOaLocation W31482834281 @default.
- W3148283428 hasConcept C127313418 @default.
- W3148283428 hasConcept C138268822 @default.
- W3148283428 hasConcept C14166107 @default.
- W3148283428 hasConcept C154945302 @default.
- W3148283428 hasConcept C185592680 @default.
- W3148283428 hasConcept C205372480 @default.
- W3148283428 hasConcept C2524010 @default.
- W3148283428 hasConcept C31972630 @default.
- W3148283428 hasConcept C33923547 @default.
- W3148283428 hasConcept C41008148 @default.
- W3148283428 hasConcept C43617362 @default.