Matches in SemOpenAlex for { <https://semopenalex.org/work/W3148316247> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3148316247 endingPage "106059" @default.
- W3148316247 startingPage "106059" @default.
- W3148316247 abstract "In this study, the classification of white cabbage seedling images is modeled with convolutional neural networks. We focus on a dataset that tracks the seedling growth over a period of 14 days, where photos were taken at four specific moments. The dataset contains 13,200 individual seedlings with corresponding labels and was retrieved from Bejo, a company operating in agriculture. Different pre-trained convolutional neural network and multi-layer perceptron architectures are developed, along with a traditional statistical method, logistic regression. The models are trained to predict the (un) successful growth of the seedlings. We find that the convolutional neural networks outperform the other models, where AlexNet is the best performing model in this research. On the test set, AlexNet is able to classify 94% of the seedlings accurately with an area under the curve of 0.95. Accordingly, AlexNet is shown to be useful and robust in this particular classification task. AlexNet can be further deployed as an early warning tool to aid professionals in making important decisions. Additionally, this model can be further developed to automate the process." @default.
- W3148316247 created "2021-04-13" @default.
- W3148316247 creator A5004385039 @default.
- W3148316247 creator A5026617038 @default.
- W3148316247 creator A5046699779 @default.
- W3148316247 date "2021-05-01" @default.
- W3148316247 modified "2023-10-14" @default.
- W3148316247 title "Deep learning for white cabbage seedling prediction" @default.
- W3148316247 cites W2057474132 @default.
- W3148316247 cites W2132424367 @default.
- W3148316247 cites W2767106145 @default.
- W3148316247 cites W2789255992 @default.
- W3148316247 cites W2803513103 @default.
- W3148316247 cites W2899434936 @default.
- W3148316247 cites W2915594101 @default.
- W3148316247 cites W2919115771 @default.
- W3148316247 cites W2954996726 @default.
- W3148316247 cites W2963801405 @default.
- W3148316247 doi "https://doi.org/10.1016/j.compag.2021.106059" @default.
- W3148316247 hasPublicationYear "2021" @default.
- W3148316247 type Work @default.
- W3148316247 sameAs 3148316247 @default.
- W3148316247 citedByCount "13" @default.
- W3148316247 countsByYear W31483162472021 @default.
- W3148316247 countsByYear W31483162472022 @default.
- W3148316247 countsByYear W31483162472023 @default.
- W3148316247 crossrefType "journal-article" @default.
- W3148316247 hasAuthorship W3148316247A5004385039 @default.
- W3148316247 hasAuthorship W3148316247A5026617038 @default.
- W3148316247 hasAuthorship W3148316247A5046699779 @default.
- W3148316247 hasBestOaLocation W31483162471 @default.
- W3148316247 hasConcept C108583219 @default.
- W3148316247 hasConcept C111919701 @default.
- W3148316247 hasConcept C119857082 @default.
- W3148316247 hasConcept C120665830 @default.
- W3148316247 hasConcept C121332964 @default.
- W3148316247 hasConcept C144027150 @default.
- W3148316247 hasConcept C153180895 @default.
- W3148316247 hasConcept C154945302 @default.
- W3148316247 hasConcept C169903167 @default.
- W3148316247 hasConcept C177264268 @default.
- W3148316247 hasConcept C179717631 @default.
- W3148316247 hasConcept C192209626 @default.
- W3148316247 hasConcept C199360897 @default.
- W3148316247 hasConcept C2776096895 @default.
- W3148316247 hasConcept C41008148 @default.
- W3148316247 hasConcept C50644808 @default.
- W3148316247 hasConcept C60908668 @default.
- W3148316247 hasConcept C81363708 @default.
- W3148316247 hasConcept C86803240 @default.
- W3148316247 hasConcept C98045186 @default.
- W3148316247 hasConceptScore W3148316247C108583219 @default.
- W3148316247 hasConceptScore W3148316247C111919701 @default.
- W3148316247 hasConceptScore W3148316247C119857082 @default.
- W3148316247 hasConceptScore W3148316247C120665830 @default.
- W3148316247 hasConceptScore W3148316247C121332964 @default.
- W3148316247 hasConceptScore W3148316247C144027150 @default.
- W3148316247 hasConceptScore W3148316247C153180895 @default.
- W3148316247 hasConceptScore W3148316247C154945302 @default.
- W3148316247 hasConceptScore W3148316247C169903167 @default.
- W3148316247 hasConceptScore W3148316247C177264268 @default.
- W3148316247 hasConceptScore W3148316247C179717631 @default.
- W3148316247 hasConceptScore W3148316247C192209626 @default.
- W3148316247 hasConceptScore W3148316247C199360897 @default.
- W3148316247 hasConceptScore W3148316247C2776096895 @default.
- W3148316247 hasConceptScore W3148316247C41008148 @default.
- W3148316247 hasConceptScore W3148316247C50644808 @default.
- W3148316247 hasConceptScore W3148316247C60908668 @default.
- W3148316247 hasConceptScore W3148316247C81363708 @default.
- W3148316247 hasConceptScore W3148316247C86803240 @default.
- W3148316247 hasConceptScore W3148316247C98045186 @default.
- W3148316247 hasLocation W31483162471 @default.
- W3148316247 hasOpenAccess W3148316247 @default.
- W3148316247 hasPrimaryLocation W31483162471 @default.
- W3148316247 hasRelatedWork W1525510058 @default.
- W3148316247 hasRelatedWork W2337926734 @default.
- W3148316247 hasRelatedWork W2763109982 @default.
- W3148316247 hasRelatedWork W2991591812 @default.
- W3148316247 hasRelatedWork W3185179407 @default.
- W3148316247 hasRelatedWork W3193301557 @default.
- W3148316247 hasRelatedWork W3211546796 @default.
- W3148316247 hasRelatedWork W4231994957 @default.
- W3148316247 hasRelatedWork W4294067781 @default.
- W3148316247 hasRelatedWork W4320802194 @default.
- W3148316247 hasVolume "184" @default.
- W3148316247 isParatext "false" @default.
- W3148316247 isRetracted "false" @default.
- W3148316247 magId "3148316247" @default.
- W3148316247 workType "article" @default.