Matches in SemOpenAlex for { <https://semopenalex.org/work/W3148334911> ?p ?o ?g. }
- W3148334911 endingPage "89" @default.
- W3148334911 startingPage "76" @default.
- W3148334911 abstract "Surrogate models are used to map input data to output data when the actual relationship between the two is unknown or computationally expensive to evaluate for several applications, including surface approximation and surrogate-based optimization. This work evaluates the performance of eight surrogate modeling techniques for those two applications over a set of generated datasets with known characteristics. With this work, we aim to provide general rules for selecting an appropriate surrogate model form based solely on the characteristics of the data being modeled. The computational experiments revealed that there is a dependence of the surrogate modeling performance on the data characteristics. However, in general, multivariate adaptive regression spline models and Gaussian process regression yielded the most accurate predictions for approximating a surface. Random forests, support vector machine regression, and Gaussian process regression models most reliably identified the optimum locations and values when used for surrogate-based optimization." @default.
- W3148334911 created "2021-04-13" @default.
- W3148334911 creator A5031711223 @default.
- W3148334911 creator A5058661078 @default.
- W3148334911 date "2021-06-01" @default.
- W3148334911 modified "2023-10-12" @default.
- W3148334911 title "Selection of surrogate modeling techniques for surface approximation and surrogate-based optimization" @default.
- W3148334911 cites W1497714811 @default.
- W3148334911 cites W1967989271 @default.
- W3148334911 cites W1996118086 @default.
- W3148334911 cites W2007930753 @default.
- W3148334911 cites W2038538989 @default.
- W3148334911 cites W2045422729 @default.
- W3148334911 cites W2048711666 @default.
- W3148334911 cites W2074703669 @default.
- W3148334911 cites W2078691191 @default.
- W3148334911 cites W2083253722 @default.
- W3148334911 cites W2096545258 @default.
- W3148334911 cites W2111072639 @default.
- W3148334911 cites W2129648589 @default.
- W3148334911 cites W2139145565 @default.
- W3148334911 cites W2299003572 @default.
- W3148334911 cites W2347017642 @default.
- W3148334911 cites W2617008217 @default.
- W3148334911 cites W2620555174 @default.
- W3148334911 cites W2755602972 @default.
- W3148334911 cites W2756659234 @default.
- W3148334911 cites W2767634046 @default.
- W3148334911 cites W2770658973 @default.
- W3148334911 cites W2771933684 @default.
- W3148334911 cites W2788431635 @default.
- W3148334911 cites W2795411881 @default.
- W3148334911 cites W2800575077 @default.
- W3148334911 cites W2911964244 @default.
- W3148334911 cites W2921897945 @default.
- W3148334911 cites W2947955424 @default.
- W3148334911 cites W3045134780 @default.
- W3148334911 cites W947044434 @default.
- W3148334911 doi "https://doi.org/10.1016/j.cherd.2021.03.028" @default.
- W3148334911 hasPublicationYear "2021" @default.
- W3148334911 type Work @default.
- W3148334911 sameAs 3148334911 @default.
- W3148334911 citedByCount "19" @default.
- W3148334911 countsByYear W31483349112022 @default.
- W3148334911 countsByYear W31483349112023 @default.
- W3148334911 crossrefType "journal-article" @default.
- W3148334911 hasAuthorship W3148334911A5031711223 @default.
- W3148334911 hasAuthorship W3148334911A5058661078 @default.
- W3148334911 hasBestOaLocation W31483349111 @default.
- W3148334911 hasConcept C105795698 @default.
- W3148334911 hasConcept C119857082 @default.
- W3148334911 hasConcept C121332964 @default.
- W3148334911 hasConcept C12267149 @default.
- W3148334911 hasConcept C124101348 @default.
- W3148334911 hasConcept C126255220 @default.
- W3148334911 hasConcept C131675550 @default.
- W3148334911 hasConcept C142806159 @default.
- W3148334911 hasConcept C152877465 @default.
- W3148334911 hasConcept C154945302 @default.
- W3148334911 hasConcept C158622935 @default.
- W3148334911 hasConcept C161584116 @default.
- W3148334911 hasConcept C163716315 @default.
- W3148334911 hasConcept C33923547 @default.
- W3148334911 hasConcept C41008148 @default.
- W3148334911 hasConcept C44882253 @default.
- W3148334911 hasConcept C61326573 @default.
- W3148334911 hasConcept C62520636 @default.
- W3148334911 hasConcept C64946054 @default.
- W3148334911 hasConcept C81692654 @default.
- W3148334911 hasConcept C83546350 @default.
- W3148334911 hasConceptScore W3148334911C105795698 @default.
- W3148334911 hasConceptScore W3148334911C119857082 @default.
- W3148334911 hasConceptScore W3148334911C121332964 @default.
- W3148334911 hasConceptScore W3148334911C12267149 @default.
- W3148334911 hasConceptScore W3148334911C124101348 @default.
- W3148334911 hasConceptScore W3148334911C126255220 @default.
- W3148334911 hasConceptScore W3148334911C131675550 @default.
- W3148334911 hasConceptScore W3148334911C142806159 @default.
- W3148334911 hasConceptScore W3148334911C152877465 @default.
- W3148334911 hasConceptScore W3148334911C154945302 @default.
- W3148334911 hasConceptScore W3148334911C158622935 @default.
- W3148334911 hasConceptScore W3148334911C161584116 @default.
- W3148334911 hasConceptScore W3148334911C163716315 @default.
- W3148334911 hasConceptScore W3148334911C33923547 @default.
- W3148334911 hasConceptScore W3148334911C41008148 @default.
- W3148334911 hasConceptScore W3148334911C44882253 @default.
- W3148334911 hasConceptScore W3148334911C61326573 @default.
- W3148334911 hasConceptScore W3148334911C62520636 @default.
- W3148334911 hasConceptScore W3148334911C64946054 @default.
- W3148334911 hasConceptScore W3148334911C81692654 @default.
- W3148334911 hasConceptScore W3148334911C83546350 @default.
- W3148334911 hasFunder F4320306084 @default.
- W3148334911 hasFunder F4320306106 @default.
- W3148334911 hasFunder F4320332170 @default.
- W3148334911 hasLocation W31483349111 @default.
- W3148334911 hasLocation W31483349112 @default.
- W3148334911 hasOpenAccess W3148334911 @default.
- W3148334911 hasPrimaryLocation W31483349111 @default.