Matches in SemOpenAlex for { <https://semopenalex.org/work/W3148396924> ?p ?o ?g. }
- W3148396924 abstract "Abstract Dimension reduction is analytical methods for reconstructing high-order tensors that the intrinsic rank of these tensor data is relatively much smaller than the dimension of the ambient measurement space. Typically, this is the case for most real world datasets in signals, images and machine learning. The CANDECOMP/PARAFAC (CP, aka Canonical Polyadic) tensor completion is a widely used approach to find a low-rank approximation for a given tensor. In the tensor model (Sanogo and Navasca in 2018 52nd Asilomar conference on signals, systems, and computers, pp 845–849, 10.1109/ACSSC.2018.8645405 , 2018), a sparse regularization minimization problem via $$ell _1$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>ℓ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:math> norm was formulated with an appropriate choice of the regularization parameter. The choice of the regularization parameter is important in the approximation accuracy. Due to the emergence of the massive data, one is faced with an onerous computational burden for computing the regularization parameter via classical approaches (Gazzola and Sabaté Landman in GAMM-Mitteilungen 43:e202000017, 2020) such as the weighted generalized cross validation (WGCV) (Chung et al. in Electr Trans Numer Anal 28:2008, 2008), the unbiased predictive risk estimator (Stein in Ann Stat 9:1135–1151, 1981; Vogel in Computational methods for inverse problems, 2002), and the discrepancy principle (Morozov in Doklady Akademii Nauk, Russian Academy of Sciences, pp 510–512, 1966). In order to improve the efficiency of choosing the regularization parameter and leverage the accuracy of the CP tensor, we propose a new algorithm for tensor completion by embedding the flexible hybrid method (Gazzola in Flexible krylov methods for lp regularization) into the framework of the CP tensor. The main benefits of this method include incorporating the regularization automatically and efficiently as well as improving accuracy in the reconstruction and algorithmic robustness. Numerical examples from image reconstruction and model order reduction demonstrate the efficacy of the proposed algorithm." @default.
- W3148396924 created "2021-04-13" @default.
- W3148396924 creator A5001230996 @default.
- W3148396924 creator A5043522608 @default.
- W3148396924 creator A5075706267 @default.
- W3148396924 date "2022-03-01" @default.
- W3148396924 modified "2023-10-14" @default.
- W3148396924 title "Low-CP-Rank Tensor Completion via Practical Regularization" @default.
- W3148396924 cites W1490180844 @default.
- W3148396924 cites W1635622277 @default.
- W3148396924 cites W1814521481 @default.
- W3148396924 cites W1870083876 @default.
- W3148396924 cites W1972510094 @default.
- W3148396924 cites W1975377467 @default.
- W3148396924 cites W1982142851 @default.
- W3148396924 cites W2013115634 @default.
- W3148396924 cites W2014617517 @default.
- W3148396924 cites W2039055345 @default.
- W3148396924 cites W2048251016 @default.
- W3148396924 cites W2054640142 @default.
- W3148396924 cites W2057503509 @default.
- W3148396924 cites W2071729267 @default.
- W3148396924 cites W2073469810 @default.
- W3148396924 cites W2091449379 @default.
- W3148396924 cites W2092647425 @default.
- W3148396924 cites W2098648646 @default.
- W3148396924 cites W2100556411 @default.
- W3148396924 cites W2114424556 @default.
- W3148396924 cites W2119741678 @default.
- W3148396924 cites W2123944402 @default.
- W3148396924 cites W2148507357 @default.
- W3148396924 cites W2168397251 @default.
- W3148396924 cites W2249229252 @default.
- W3148396924 cites W2490308495 @default.
- W3148396924 cites W2620850570 @default.
- W3148396924 cites W2789481482 @default.
- W3148396924 cites W2892019262 @default.
- W3148396924 cites W2919008182 @default.
- W3148396924 cites W2963726588 @default.
- W3148396924 cites W2964330822 @default.
- W3148396924 cites W2982798447 @default.
- W3148396924 cites W3033602550 @default.
- W3148396924 cites W3089371893 @default.
- W3148396924 cites W3103532839 @default.
- W3148396924 cites W3106141888 @default.
- W3148396924 cites W312756907 @default.
- W3148396924 cites W3217247658 @default.
- W3148396924 cites W4241270240 @default.
- W3148396924 cites W4250332546 @default.
- W3148396924 cites W4255512111 @default.
- W3148396924 doi "https://doi.org/10.1007/s10915-022-01789-9" @default.
- W3148396924 hasPublicationYear "2022" @default.
- W3148396924 type Work @default.
- W3148396924 sameAs 3148396924 @default.
- W3148396924 citedByCount "2" @default.
- W3148396924 countsByYear W31483969242022 @default.
- W3148396924 countsByYear W31483969242023 @default.
- W3148396924 crossrefType "journal-article" @default.
- W3148396924 hasAuthorship W3148396924A5001230996 @default.
- W3148396924 hasAuthorship W3148396924A5043522608 @default.
- W3148396924 hasAuthorship W3148396924A5075706267 @default.
- W3148396924 hasBestOaLocation W31483969241 @default.
- W3148396924 hasConcept C105795698 @default.
- W3148396924 hasConcept C11413529 @default.
- W3148396924 hasConcept C114614502 @default.
- W3148396924 hasConcept C134306372 @default.
- W3148396924 hasConcept C135252773 @default.
- W3148396924 hasConcept C154945302 @default.
- W3148396924 hasConcept C155281189 @default.
- W3148396924 hasConcept C164226766 @default.
- W3148396924 hasConcept C185429906 @default.
- W3148396924 hasConcept C202444582 @default.
- W3148396924 hasConcept C2776135515 @default.
- W3148396924 hasConcept C28826006 @default.
- W3148396924 hasConcept C33676613 @default.
- W3148396924 hasConcept C33923547 @default.
- W3148396924 hasConcept C41008148 @default.
- W3148396924 hasConceptScore W3148396924C105795698 @default.
- W3148396924 hasConceptScore W3148396924C11413529 @default.
- W3148396924 hasConceptScore W3148396924C114614502 @default.
- W3148396924 hasConceptScore W3148396924C134306372 @default.
- W3148396924 hasConceptScore W3148396924C135252773 @default.
- W3148396924 hasConceptScore W3148396924C154945302 @default.
- W3148396924 hasConceptScore W3148396924C155281189 @default.
- W3148396924 hasConceptScore W3148396924C164226766 @default.
- W3148396924 hasConceptScore W3148396924C185429906 @default.
- W3148396924 hasConceptScore W3148396924C202444582 @default.
- W3148396924 hasConceptScore W3148396924C2776135515 @default.
- W3148396924 hasConceptScore W3148396924C28826006 @default.
- W3148396924 hasConceptScore W3148396924C33676613 @default.
- W3148396924 hasConceptScore W3148396924C33923547 @default.
- W3148396924 hasConceptScore W3148396924C41008148 @default.
- W3148396924 hasFunder F4320335353 @default.
- W3148396924 hasIssue "1" @default.
- W3148396924 hasLocation W31483969241 @default.
- W3148396924 hasLocation W31483969242 @default.
- W3148396924 hasLocation W31483969243 @default.
- W3148396924 hasLocation W31483969244 @default.
- W3148396924 hasOpenAccess W3148396924 @default.
- W3148396924 hasPrimaryLocation W31483969241 @default.