Matches in SemOpenAlex for { <https://semopenalex.org/work/W3148400730> ?p ?o ?g. }
- W3148400730 endingPage "177" @default.
- W3148400730 startingPage "160" @default.
- W3148400730 abstract "Additive Manufacturing (AM) technologies are experiencing rapid growth in the past decades. Critical objectives for the AM processes are how to ensure product quality and process consistency. The detection and correction of part and process anomalies show great promises and challenges. This paper presents an online laser-based process monitoring and control system to improve the geometric accuracy and in-plane surface quality for the AM process. The point cloud dataset obtained from the 3D laser scanner provides the current part height in the Z direction and in-plane surface depth information for each layer. A Convolutional Neural Network (CNN) model is designed with the pre-trained VGG16 model and validated using the monitoring data to effectively classify the in-plane anomalies. Two developed PID-based online closed-loop control systems are implemented which can significantly reduce the height deviation errors between the fabricated part measurements and design values, and correct the in-plane surface anomalies." @default.
- W3148400730 created "2021-04-13" @default.
- W3148400730 creator A5088580676 @default.
- W3148400730 creator A5089113303 @default.
- W3148400730 date "2021-03-04" @default.
- W3148400730 modified "2023-09-27" @default.
- W3148400730 title "Online Convolutional Neural Network-based anomaly detection and quality control for Fused Filament Fabrication process" @default.
- W3148400730 cites W1570613334 @default.
- W3148400730 cites W2000018820 @default.
- W3148400730 cites W2077475008 @default.
- W3148400730 cites W2081159330 @default.
- W3148400730 cites W2081292061 @default.
- W3148400730 cites W2083624955 @default.
- W3148400730 cites W2114603952 @default.
- W3148400730 cites W2133992176 @default.
- W3148400730 cites W2152864241 @default.
- W3148400730 cites W2153125595 @default.
- W3148400730 cites W2463151186 @default.
- W3148400730 cites W2522881937 @default.
- W3148400730 cites W2594944823 @default.
- W3148400730 cites W2611819392 @default.
- W3148400730 cites W2725015551 @default.
- W3148400730 cites W2767383620 @default.
- W3148400730 cites W2782438550 @default.
- W3148400730 cites W2786472974 @default.
- W3148400730 cites W2796229351 @default.
- W3148400730 cites W2810873985 @default.
- W3148400730 cites W2885480269 @default.
- W3148400730 cites W2889422763 @default.
- W3148400730 cites W2889586996 @default.
- W3148400730 cites W2895046268 @default.
- W3148400730 cites W2896842408 @default.
- W3148400730 cites W2898297370 @default.
- W3148400730 cites W2906569178 @default.
- W3148400730 cites W2911435426 @default.
- W3148400730 cites W2911758882 @default.
- W3148400730 cites W2916771056 @default.
- W3148400730 cites W2941045572 @default.
- W3148400730 cites W2951790794 @default.
- W3148400730 cites W2956046114 @default.
- W3148400730 cites W2964374527 @default.
- W3148400730 cites W2990857013 @default.
- W3148400730 cites W3001039722 @default.
- W3148400730 cites W3033455154 @default.
- W3148400730 cites W3043532440 @default.
- W3148400730 cites W3049618663 @default.
- W3148400730 cites W3111456878 @default.
- W3148400730 cites W3127151076 @default.
- W3148400730 cites W3130247865 @default.
- W3148400730 doi "https://doi.org/10.1080/17452759.2021.1905858" @default.
- W3148400730 hasPublicationYear "2021" @default.
- W3148400730 type Work @default.
- W3148400730 sameAs 3148400730 @default.
- W3148400730 citedByCount "24" @default.
- W3148400730 countsByYear W31484007302021 @default.
- W3148400730 countsByYear W31484007302022 @default.
- W3148400730 countsByYear W31484007302023 @default.
- W3148400730 crossrefType "journal-article" @default.
- W3148400730 hasAuthorship W3148400730A5088580676 @default.
- W3148400730 hasAuthorship W3148400730A5089113303 @default.
- W3148400730 hasConcept C111919701 @default.
- W3148400730 hasConcept C131979681 @default.
- W3148400730 hasConcept C154945302 @default.
- W3148400730 hasConcept C155386361 @default.
- W3148400730 hasConcept C17825722 @default.
- W3148400730 hasConcept C2524010 @default.
- W3148400730 hasConcept C2776436953 @default.
- W3148400730 hasConcept C33923547 @default.
- W3148400730 hasConcept C41008148 @default.
- W3148400730 hasConcept C50644808 @default.
- W3148400730 hasConcept C739882 @default.
- W3148400730 hasConcept C81363708 @default.
- W3148400730 hasConcept C98045186 @default.
- W3148400730 hasConceptScore W3148400730C111919701 @default.
- W3148400730 hasConceptScore W3148400730C131979681 @default.
- W3148400730 hasConceptScore W3148400730C154945302 @default.
- W3148400730 hasConceptScore W3148400730C155386361 @default.
- W3148400730 hasConceptScore W3148400730C17825722 @default.
- W3148400730 hasConceptScore W3148400730C2524010 @default.
- W3148400730 hasConceptScore W3148400730C2776436953 @default.
- W3148400730 hasConceptScore W3148400730C33923547 @default.
- W3148400730 hasConceptScore W3148400730C41008148 @default.
- W3148400730 hasConceptScore W3148400730C50644808 @default.
- W3148400730 hasConceptScore W3148400730C739882 @default.
- W3148400730 hasConceptScore W3148400730C81363708 @default.
- W3148400730 hasConceptScore W3148400730C98045186 @default.
- W3148400730 hasIssue "2" @default.
- W3148400730 hasLocation W31484007301 @default.
- W3148400730 hasOpenAccess W3148400730 @default.
- W3148400730 hasPrimaryLocation W31484007301 @default.
- W3148400730 hasRelatedWork W2735477435 @default.
- W3148400730 hasRelatedWork W2748454020 @default.
- W3148400730 hasRelatedWork W3016958897 @default.
- W3148400730 hasRelatedWork W3045739591 @default.
- W3148400730 hasRelatedWork W3104608133 @default.
- W3148400730 hasRelatedWork W3119610945 @default.
- W3148400730 hasRelatedWork W3181746755 @default.
- W3148400730 hasRelatedWork W4283379348 @default.