Matches in SemOpenAlex for { <https://semopenalex.org/work/W3148567701> ?p ?o ?g. }
- W3148567701 endingPage "1960" @default.
- W3148567701 startingPage "1950" @default.
- W3148567701 abstract "ConspectusMetal nanoparticles have been utilized for a vast amount of plasmon enhanced spectroscopies and energy conversion devices. Their unique optical properties allow them to be used across the UV–vis-NIR spectrum tuned by their size, shape, and material. In addition to utility in enhanced spectroscopy and energy/charge transfer, the plasmon resonance of metal nanoparticles is sensitive to its surrounding environment in several ways. The local refractive index determines the resonance wavelength, but plasmon damping, as indicated by the homogeneous line width, also depends on the surface properties of the metal nanoparticles. Plasmon oscillations can decay through interband, intraband, radiation, and surface damping. While the first three damping mechanisms can be modeled based on bulk dielectric data using electromagnetic simulations, surface damping does not depend on the material properties of the nanoparticle alone but rather on the interface composition between the nanoparticle and its surrounding environment. In this Account, we will discuss three different metal nanoparticle interfaces, identifying the surface damping contribution from chemical interface damping and how it manifests itself in different interface types. On the way to uncovering the various damping contributions, we use three different single-particle spectroscopic techniques that are essential to measuring homogeneous plasmon line widths: darkfield scattering, photothermal heterodyne imaging, and photoluminescence microscopies. Obtaining the homogeneous plasmon spectrum through single-particle spectroscopy is paramount to measuring changes in plasmon damping, where even minor size and shape heterogeneities can completely obfuscate the broadening caused by surface damping. Using darkfield scattering spectroscopy, we first describe a model for chemical interface damping by expanding upon the surface damping contribution to the plasmon resonance line width to include additional influences due to adsorbed molecules. Based on the understanding of chemical interface damping as a surface damping mechanism, we then carefully compare how two molecular isomers lead to greatly different damping rates upon adsorption to gold nanorods due to differences in the formation of image dipoles within the metal nanoparticles. This plasmon damping dependence on the chemical identity of the interface is strongly correlated with the chemical’s electronegativity. A similar damping trend is observed for metal oxide semiconductors, where the metal oxide with greater electron affinity leads to larger interface damping. However, in this case, the mechanism is different for the metal oxide interfaces, as damping occurs through charge transfer into interfacial states. Finally, the damping effect of catalytic metal nanoislands on gold nanorods is compared for the three spectroscopic methods mentioned. Through correlated single-particle scattering, absorption, and photoluminescence spectroscopy, the mechanism for metal–metal interface damping is determined most likely to arise from an enhanced absorption, although charge transfer cannot be ruled out. From this body of research, we conclude that chemical interface damping is a major component of the total damping rate of the plasmon resonance and critically depends on the chemical interface of the metallic nanoparticles. Plasmon damping occurs through distinct mechanisms that are important to differentiate when considering the purpose of the plasmonic nanoparticle: enhanced spectroscopy, energy conversion, or catalysis. It must also be noted that many of the mechanisms are currently indifferentiable, and thus, new single-particle spectroscopic methods are needed to further characterize the mechanisms underlying chemical interface damping." @default.
- W3148567701 created "2021-04-13" @default.
- W3148567701 creator A5011969158 @default.
- W3148567701 creator A5024800825 @default.
- W3148567701 date "2021-03-31" @default.
- W3148567701 modified "2023-10-17" @default.
- W3148567701 title "Chemical Interface Damping of Surface Plasmon Resonances" @default.
- W3148567701 cites W1521131431 @default.
- W3148567701 cites W1970060347 @default.
- W3148567701 cites W1973605515 @default.
- W3148567701 cites W1978893789 @default.
- W3148567701 cites W1978906881 @default.
- W3148567701 cites W2002238943 @default.
- W3148567701 cites W2037933198 @default.
- W3148567701 cites W2038696553 @default.
- W3148567701 cites W2039163805 @default.
- W3148567701 cites W2046808980 @default.
- W3148567701 cites W2068908844 @default.
- W3148567701 cites W2083207356 @default.
- W3148567701 cites W2086696748 @default.
- W3148567701 cites W2091398242 @default.
- W3148567701 cites W2093018348 @default.
- W3148567701 cites W2096628382 @default.
- W3148567701 cites W2109905811 @default.
- W3148567701 cites W2110250531 @default.
- W3148567701 cites W2112165279 @default.
- W3148567701 cites W2122932285 @default.
- W3148567701 cites W2130805419 @default.
- W3148567701 cites W2135511755 @default.
- W3148567701 cites W2156092660 @default.
- W3148567701 cites W2161989523 @default.
- W3148567701 cites W2186733443 @default.
- W3148567701 cites W2201188974 @default.
- W3148567701 cites W2206485707 @default.
- W3148567701 cites W2316968996 @default.
- W3148567701 cites W2317640843 @default.
- W3148567701 cites W2318675354 @default.
- W3148567701 cites W2326043749 @default.
- W3148567701 cites W2326708413 @default.
- W3148567701 cites W2360700326 @default.
- W3148567701 cites W2556722092 @default.
- W3148567701 cites W2586081526 @default.
- W3148567701 cites W2592422834 @default.
- W3148567701 cites W2596749511 @default.
- W3148567701 cites W2623643325 @default.
- W3148567701 cites W2738334925 @default.
- W3148567701 cites W2768750772 @default.
- W3148567701 cites W2774077396 @default.
- W3148567701 cites W2778983844 @default.
- W3148567701 cites W2800430219 @default.
- W3148567701 cites W2802125240 @default.
- W3148567701 cites W2884160315 @default.
- W3148567701 cites W2886157050 @default.
- W3148567701 cites W2898330153 @default.
- W3148567701 cites W2898855577 @default.
- W3148567701 cites W2925260843 @default.
- W3148567701 cites W2937731393 @default.
- W3148567701 cites W2968815492 @default.
- W3148567701 cites W2969875339 @default.
- W3148567701 cites W3009976723 @default.
- W3148567701 cites W3013960588 @default.
- W3148567701 cites W3015679039 @default.
- W3148567701 cites W3025072562 @default.
- W3148567701 cites W3036268256 @default.
- W3148567701 cites W3078532343 @default.
- W3148567701 cites W3081085947 @default.
- W3148567701 cites W634208138 @default.
- W3148567701 doi "https://doi.org/10.1021/acs.accounts.0c00872" @default.
- W3148567701 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33788547" @default.
- W3148567701 hasPublicationYear "2021" @default.
- W3148567701 type Work @default.
- W3148567701 sameAs 3148567701 @default.
- W3148567701 citedByCount "63" @default.
- W3148567701 countsByYear W31485677012021 @default.
- W3148567701 countsByYear W31485677012022 @default.
- W3148567701 countsByYear W31485677012023 @default.
- W3148567701 crossrefType "journal-article" @default.
- W3148567701 hasAuthorship W3148567701A5011969158 @default.
- W3148567701 hasAuthorship W3148567701A5024800825 @default.
- W3148567701 hasBestOaLocation W31485677011 @default.
- W3148567701 hasConcept C10165471 @default.
- W3148567701 hasConcept C106847996 @default.
- W3148567701 hasConcept C109214941 @default.
- W3148567701 hasConcept C110879396 @default.
- W3148567701 hasConcept C120665830 @default.
- W3148567701 hasConcept C121332964 @default.
- W3148567701 hasConcept C136676167 @default.
- W3148567701 hasConcept C139210041 @default.
- W3148567701 hasConcept C155672457 @default.
- W3148567701 hasConcept C159467904 @default.
- W3148567701 hasConcept C171250308 @default.
- W3148567701 hasConcept C184779094 @default.
- W3148567701 hasConcept C185592680 @default.
- W3148567701 hasConcept C191486275 @default.
- W3148567701 hasConcept C192562407 @default.
- W3148567701 hasConcept C2778157831 @default.
- W3148567701 hasConcept C32891209 @default.
- W3148567701 hasConcept C41999313 @default.