Matches in SemOpenAlex for { <https://semopenalex.org/work/W3148660621> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3148660621 abstract "The condenser heat transfer of the incl tned rotating heat pipe which was less analyzed are investigated. A physical model is creatively proposed consisting of a laminar filmwise condensation region amd a bottom condensation flow region. The theoretical formulas of the average Nusselt number and the local Nusselt number are obtained by solving the flow differential equations. The effect of centrlfiigal acceleration on condenser heat transfer characteristics is also investigated. The relations between the rotational speed and average condenser heat trsmsfer coef. and local condenser heat transfer coef. are shown. There are good agreement between theoretical and experimental results, especially in high rotational speed range. HGMBNCLATURB a centrlf-'agal acceleration at tube axis A cross sectional area of bottom flow Cp specific heat of condensate d tube diameter f fanning' 3 friction factor F force on an element of bottom flow h heat transfer coefficient 1 condenser section length L latent heat of condensation Q volumetric flow rate of bottom flow i^ tube radiusR radius of rotation Ts— temperature of satxirated vapor Tw condenser wall temperature u local clrcamferential velocity component of condensate film mean velocity of bottom flow V IocslI aucial velocity component of condensate film X distance along tube axis z distance normal to tube Interior surface a angle between heat pipe ajcls and rotation axis f momentum correction factor J thicknessof condensate film X heat conductivity of condensate p —• density of condensate y kinematic viscosity of condensate Q angle of bottom flow level ^ co-ordinate in circumferential direction G = ctga Ga = asinrtd-'/v'' H = Cp(T3-Tw)/L Nu local nusselt number = hd/A = =. (2GaPrG/(3HZ))* Pr prandtl number =(*v>Cp/A Re Helnolds number = (Ga/2 )^(' /(9 ) X dimensionless axial distance = Gx/r. Z dimensionless condensate film thickness = (2GaPrG/(3H))(^/d)* INTRODUCTION For promoting the energy conservation by utilizing the waste heat from factories, the study and development of efficient heat recovery systems which make use of heat pipe have been promoted. It is well known that heat pipe heat exchanger has a great deal of advantages for gas to gas heat exchange , such as its excellent heat transfer performance and simple structure , so its practical applications have been made most progressively till now. However, in highly fouling environment such as heavy oil flue gas, it becomes am important subject of study that the dust accumulation make heat transfer performance degeneration, one of the best way to solve this problem is to use rotating heat pipe heat exchajiger which has a rotating heat pipe bundle. According to the relative position between the heat pipe axis and the axis of rotation, rotating heat pipes can be levided into three basic groups, such as, cc-axial. parallel, and inclined. Performance characteristics of a co-axial or parallel rotating heat pipe has been described in previous literatures, but only little is known about the performance of a inclined rotating heat pipe. The longitudinal axis of the inclined rotating heat pipe is inclined to the axis of rotatlon(Fig. 1 . ) , which depends on the component of centrifugal force to pump the condensate from the condenser to evaporator to complete the cycle. The purpose of this study was to Investigate theoretically the condeaaer heat transfer characteristics of a inclined rotating heat pipe, with a new physical model, discuss the condenser heat transfer mechanism according to the flow patterns of working liquid which was shown in physical model. BXPBHIMENTAI, EQUIPMENTS The appaxatua used for this study was similar to the one used in earlier study CI ] . Fig.1. shows a schematic diagram of the overall experimental equipment. Fig.1 Schematic diagraun of experimental equipment The heat pipe was rotated using a variable speed motor, and heated electrically, and cooled by water. Further details of the experimental equipment are provide in reference ( 1 ] . OPERATION PAHAMETER3 heat Dipe length 1500 mm internal diauneter 19 mm external diauneter 22 mm condenser length 410 mm evaporator length 820 mm min. eccentricity(B. ) 500 mm working fluid water heat pipe wall coppe r max. power transmitted by each pipe 3 lev THEORETICAL PROGRAM For condensation cylindrical., inclined ces acting on the cond over the tube surface force, the centrifugaJ. steam flow velocity is along the vapor-liquid ation cases, the flow Fig. 2. within a non-capillary, rotating heat pipe,forensation film formed are the gravitational force and , when the large, shear force interface. In the operpattems aa shown by filMf., To discuss more detail, the patterns will be defined aa follows: a) condensate with the film flows along the tube interior STirface as shown by the broken line in Fig. 2; b) a bottom flow represented by the hatch area in Fig. 2, this bottom flow region, in general, blocks most of heat flow across itself and the tube surface covered by it becomes ineffective as a condensatlci heat transfer surface. Therefore, when calculating the overaJ.1 condenser heat transfer coef. for the whole condenser section, it is not necessary to take into accout the bottom flow over the tube surface. Here we only analysed the behavior of the bottom flow. Condensate film flow Analysis waa made under assumptions similar to those of Nusselt's well-known basic condensation theory. Otherwise, we assume the effects of vapor shear and gravity are small enough to be negligible. Prom Fig. 2 we see, on the condensate act the circumferential component of centrifugal acceleration, acoaasin*, in the i^-direction (acosAsin^ can be found from geometrical consideration), and the longitudinal component of centrifugsLl acceleration, asinof, in x-direction. The momentum equations in the x-directlon and ^-direction become:" @default.
- W3148660621 created "2021-04-13" @default.
- W3148660621 creator A5056390672 @default.
- W3148660621 creator A5077484937 @default.
- W3148660621 date "2013-01-01" @default.
- W3148660621 modified "2023-09-24" @default.
- W3148660621 title "Heat pipe cooling of large electric motors" @default.
- W3148660621 cites W2117018599 @default.
- W3148660621 cites W350296510 @default.
- W3148660621 cites W92520224 @default.
- W3148660621 hasPublicationYear "2013" @default.
- W3148660621 type Work @default.
- W3148660621 sameAs 3148660621 @default.
- W3148660621 citedByCount "0" @default.
- W3148660621 crossrefType "journal-article" @default.
- W3148660621 hasAuthorship W3148660621A5056390672 @default.
- W3148660621 hasAuthorship W3148660621A5077484937 @default.
- W3148660621 hasConcept C120665830 @default.
- W3148660621 hasConcept C121332964 @default.
- W3148660621 hasConcept C130230704 @default.
- W3148660621 hasConcept C159188206 @default.
- W3148660621 hasConcept C182748727 @default.
- W3148660621 hasConcept C185592680 @default.
- W3148660621 hasConcept C192562407 @default.
- W3148660621 hasConcept C196558001 @default.
- W3148660621 hasConcept C200093464 @default.
- W3148660621 hasConcept C2780934509 @default.
- W3148660621 hasConcept C29700514 @default.
- W3148660621 hasConcept C2982854487 @default.
- W3148660621 hasConcept C50517652 @default.
- W3148660621 hasConcept C57879066 @default.
- W3148660621 hasConcept C76563973 @default.
- W3148660621 hasConcept C97355855 @default.
- W3148660621 hasConceptScore W3148660621C120665830 @default.
- W3148660621 hasConceptScore W3148660621C121332964 @default.
- W3148660621 hasConceptScore W3148660621C130230704 @default.
- W3148660621 hasConceptScore W3148660621C159188206 @default.
- W3148660621 hasConceptScore W3148660621C182748727 @default.
- W3148660621 hasConceptScore W3148660621C185592680 @default.
- W3148660621 hasConceptScore W3148660621C192562407 @default.
- W3148660621 hasConceptScore W3148660621C196558001 @default.
- W3148660621 hasConceptScore W3148660621C200093464 @default.
- W3148660621 hasConceptScore W3148660621C2780934509 @default.
- W3148660621 hasConceptScore W3148660621C29700514 @default.
- W3148660621 hasConceptScore W3148660621C2982854487 @default.
- W3148660621 hasConceptScore W3148660621C50517652 @default.
- W3148660621 hasConceptScore W3148660621C57879066 @default.
- W3148660621 hasConceptScore W3148660621C76563973 @default.
- W3148660621 hasConceptScore W3148660621C97355855 @default.
- W3148660621 hasLocation W31486606211 @default.
- W3148660621 hasOpenAccess W3148660621 @default.
- W3148660621 hasPrimaryLocation W31486606211 @default.
- W3148660621 hasRelatedWork W1966147910 @default.
- W3148660621 hasRelatedWork W1967524702 @default.
- W3148660621 hasRelatedWork W2008277053 @default.
- W3148660621 hasRelatedWork W2022813020 @default.
- W3148660621 hasRelatedWork W2024272975 @default.
- W3148660621 hasRelatedWork W2031453824 @default.
- W3148660621 hasRelatedWork W2039163400 @default.
- W3148660621 hasRelatedWork W2063033411 @default.
- W3148660621 hasRelatedWork W2078801014 @default.
- W3148660621 hasRelatedWork W2188647179 @default.
- W3148660621 hasRelatedWork W2355504630 @default.
- W3148660621 hasRelatedWork W2364588323 @default.
- W3148660621 hasRelatedWork W2388461941 @default.
- W3148660621 hasRelatedWork W2539234154 @default.
- W3148660621 hasRelatedWork W2691307722 @default.
- W3148660621 hasRelatedWork W2748059943 @default.
- W3148660621 hasRelatedWork W2796304936 @default.
- W3148660621 hasRelatedWork W3048748916 @default.
- W3148660621 hasRelatedWork W2186921236 @default.
- W3148660621 hasRelatedWork W2330732312 @default.
- W3148660621 isParatext "false" @default.
- W3148660621 isRetracted "false" @default.
- W3148660621 magId "3148660621" @default.
- W3148660621 workType "article" @default.