Matches in SemOpenAlex for { <https://semopenalex.org/work/W3148678985> ?p ?o ?g. }
- W3148678985 abstract "Machine learning techniques have been witnessing perpetual success in predicting and understanding behaviors of a diverse range of complex systems. By employing a deep learning method on limited time-series information of a handful of nodes from large-size complex systems, we label the underlying network structures assigned in different classes. We consider two popular models, namely, coupled Kuramoto oscillators and susceptible–infectious–susceptible to demonstrate our results. Importantly, we elucidate that even binary information of the time evolution behavior of a few coupled units (nodes) yields as accurate classification of the underlying network structure as achieved by the actual time-series data. The key of the entire process reckons on feeding the time-series information of the nodes when the system evolves in a partially synchronized state, i.e., neither completely incoherent nor completely synchronized. The two biggest advantages of our method over previous existing methods are its simplicity and the requirement of the time evolution of one largest degree node or a handful of the nodes to predict the classification of large-size networks with remarkable accuracy." @default.
- W3148678985 created "2021-04-13" @default.
- W3148678985 creator A5004520932 @default.
- W3148678985 creator A5040455235 @default.
- W3148678985 creator A5052728237 @default.
- W3148678985 creator A5084094752 @default.
- W3148678985 date "2021-03-01" @default.
- W3148678985 modified "2023-10-16" @default.
- W3148678985 title "Machine learning assisted network classification from symbolic time-series" @default.
- W3148678985 cites W1878853999 @default.
- W3148678985 cites W1966106405 @default.
- W3148678985 cites W1992406658 @default.
- W3148678985 cites W2001295760 @default.
- W3148678985 cites W2008620264 @default.
- W3148678985 cites W2023379985 @default.
- W3148678985 cites W2027866240 @default.
- W3148678985 cites W2036655194 @default.
- W3148678985 cites W2042652332 @default.
- W3148678985 cites W2072298344 @default.
- W3148678985 cites W2076618566 @default.
- W3148678985 cites W2122158731 @default.
- W3148678985 cites W2124637492 @default.
- W3148678985 cites W2130518506 @default.
- W3148678985 cites W2130847410 @default.
- W3148678985 cites W2136525561 @default.
- W3148678985 cites W2148301044 @default.
- W3148678985 cites W2153692272 @default.
- W3148678985 cites W2162176077 @default.
- W3148678985 cites W2300660447 @default.
- W3148678985 cites W2337082154 @default.
- W3148678985 cites W2557751742 @default.
- W3148678985 cites W2563240863 @default.
- W3148678985 cites W2765128778 @default.
- W3148678985 cites W2782714865 @default.
- W3148678985 cites W2801738585 @default.
- W3148678985 cites W2883520668 @default.
- W3148678985 cites W2892035503 @default.
- W3148678985 cites W2951138725 @default.
- W3148678985 cites W2982018001 @default.
- W3148678985 cites W2983684261 @default.
- W3148678985 cites W2993713496 @default.
- W3148678985 cites W3081540188 @default.
- W3148678985 cites W3084140769 @default.
- W3148678985 cites W3102718764 @default.
- W3148678985 cites W3104864936 @default.
- W3148678985 cites W3110317195 @default.
- W3148678985 cites W3184975572 @default.
- W3148678985 cites W594570922 @default.
- W3148678985 doi "https://doi.org/10.1063/5.0046406" @default.
- W3148678985 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33810749" @default.
- W3148678985 hasPublicationYear "2021" @default.
- W3148678985 type Work @default.
- W3148678985 sameAs 3148678985 @default.
- W3148678985 citedByCount "10" @default.
- W3148678985 countsByYear W31486789852021 @default.
- W3148678985 countsByYear W31486789852022 @default.
- W3148678985 countsByYear W31486789852023 @default.
- W3148678985 crossrefType "journal-article" @default.
- W3148678985 hasAuthorship W3148678985A5004520932 @default.
- W3148678985 hasAuthorship W3148678985A5040455235 @default.
- W3148678985 hasAuthorship W3148678985A5052728237 @default.
- W3148678985 hasAuthorship W3148678985A5084094752 @default.
- W3148678985 hasConcept C111472728 @default.
- W3148678985 hasConcept C111919701 @default.
- W3148678985 hasConcept C119857082 @default.
- W3148678985 hasConcept C124101348 @default.
- W3148678985 hasConcept C127413603 @default.
- W3148678985 hasConcept C136764020 @default.
- W3148678985 hasConcept C138885662 @default.
- W3148678985 hasConcept C143724316 @default.
- W3148678985 hasConcept C151406439 @default.
- W3148678985 hasConcept C151730666 @default.
- W3148678985 hasConcept C154945302 @default.
- W3148678985 hasConcept C159985019 @default.
- W3148678985 hasConcept C192562407 @default.
- W3148678985 hasConcept C204323151 @default.
- W3148678985 hasConcept C26517878 @default.
- W3148678985 hasConcept C2776372474 @default.
- W3148678985 hasConcept C34947359 @default.
- W3148678985 hasConcept C38652104 @default.
- W3148678985 hasConcept C41008148 @default.
- W3148678985 hasConcept C47822265 @default.
- W3148678985 hasConcept C62611344 @default.
- W3148678985 hasConcept C66938386 @default.
- W3148678985 hasConcept C80444323 @default.
- W3148678985 hasConcept C86803240 @default.
- W3148678985 hasConcept C98045186 @default.
- W3148678985 hasConceptScore W3148678985C111472728 @default.
- W3148678985 hasConceptScore W3148678985C111919701 @default.
- W3148678985 hasConceptScore W3148678985C119857082 @default.
- W3148678985 hasConceptScore W3148678985C124101348 @default.
- W3148678985 hasConceptScore W3148678985C127413603 @default.
- W3148678985 hasConceptScore W3148678985C136764020 @default.
- W3148678985 hasConceptScore W3148678985C138885662 @default.
- W3148678985 hasConceptScore W3148678985C143724316 @default.
- W3148678985 hasConceptScore W3148678985C151406439 @default.
- W3148678985 hasConceptScore W3148678985C151730666 @default.
- W3148678985 hasConceptScore W3148678985C154945302 @default.
- W3148678985 hasConceptScore W3148678985C159985019 @default.
- W3148678985 hasConceptScore W3148678985C192562407 @default.