Matches in SemOpenAlex for { <https://semopenalex.org/work/W3148730244> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3148730244 endingPage "512" @default.
- W3148730244 startingPage "467" @default.
- W3148730244 abstract "We investigate which infinite binary sequences (reals) are effectively random with respect to some continuous (i.e., non-atomic) probability measure. We prove that for every <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=application/x-tex>n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, all but countably many reals are <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=application/x-tex>n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-random for such a measure, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=application/x-tex>n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> indicates the arithmetical complexity of the Martin-Löf tests allowed. The proof rests upon an application of Borel determinacy. Therefore, the proof presupposes the existence of infinitely many iterates of the power set of the natural numbers. In the second part of the paper we present a metamathematical analysis showing that this assumption is indeed necessary. More precisely, there exists a computable function <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that, for any <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=application/x-tex>n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the statement “All but countably many reals are <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G left-parenthesis n right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>G(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-random with respect to a continuous probability measure” cannot be proved in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sans-serif upper Z sans-serif upper F sans-serif upper C Subscript n Superscript minus> <mml:semantics> <mml:msubsup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=sans-serif>Z</mml:mi> <mml:mi mathvariant=sans-serif>F</mml:mi> <mml:mi mathvariant=sans-serif>C</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> </mml:msubsup> <mml:annotation encoding=application/x-tex>mathsf {ZFC}^-_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Here <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sans-serif upper Z sans-serif upper F sans-serif upper C Subscript n Superscript minus> <mml:semantics> <mml:msubsup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=sans-serif>Z</mml:mi> <mml:mi mathvariant=sans-serif>F</mml:mi> <mml:mi mathvariant=sans-serif>C</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> </mml:msubsup> <mml:annotation encoding=application/x-tex>mathsf {ZFC}^-_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> stands for Zermelo-Fraenkel set theory with the Axiom of Choice, where the Power Set Axiom is replaced by the existence of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=application/x-tex>n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-many iterates of the power set of the natural numbers. The proof of the latter fact rests on a very general obstruction to randomness, namely the presence of an internal definability structure." @default.
- W3148730244 created "2021-04-13" @default.
- W3148730244 creator A5019270344 @default.
- W3148730244 creator A5056375116 @default.
- W3148730244 date "2021-08-30" @default.
- W3148730244 modified "2023-10-17" @default.
- W3148730244 title "Effective randomness for continuous measures" @default.
- W3148730244 cites W1539382740 @default.
- W3148730244 cites W1574049752 @default.
- W3148730244 cites W1579696469 @default.
- W3148730244 cites W1967782843 @default.
- W3148730244 cites W1968792152 @default.
- W3148730244 cites W1985995199 @default.
- W3148730244 cites W2007983321 @default.
- W3148730244 cites W2017193571 @default.
- W3148730244 cites W2026230232 @default.
- W3148730244 cites W2029712093 @default.
- W3148730244 cites W2049288284 @default.
- W3148730244 cites W2052854342 @default.
- W3148730244 cites W2066889014 @default.
- W3148730244 cites W2069150487 @default.
- W3148730244 cites W2085361497 @default.
- W3148730244 cites W2100382100 @default.
- W3148730244 cites W2122092051 @default.
- W3148730244 cites W2491693619 @default.
- W3148730244 cites W2499081645 @default.
- W3148730244 cites W4213149143 @default.
- W3148730244 cites W4233502995 @default.
- W3148730244 cites W4247372698 @default.
- W3148730244 cites W4248784701 @default.
- W3148730244 doi "https://doi.org/10.1090/jams/980" @default.
- W3148730244 hasPublicationYear "2021" @default.
- W3148730244 type Work @default.
- W3148730244 sameAs 3148730244 @default.
- W3148730244 citedByCount "1" @default.
- W3148730244 countsByYear W31487302442023 @default.
- W3148730244 crossrefType "journal-article" @default.
- W3148730244 hasAuthorship W3148730244A5019270344 @default.
- W3148730244 hasAuthorship W3148730244A5056375116 @default.
- W3148730244 hasBestOaLocation W31487302441 @default.
- W3148730244 hasConcept C105795698 @default.
- W3148730244 hasConcept C11413529 @default.
- W3148730244 hasConcept C125112378 @default.
- W3148730244 hasConcept C154945302 @default.
- W3148730244 hasConcept C18903297 @default.
- W3148730244 hasConcept C2776321320 @default.
- W3148730244 hasConcept C2777299769 @default.
- W3148730244 hasConcept C33923547 @default.
- W3148730244 hasConcept C41008148 @default.
- W3148730244 hasConcept C86803240 @default.
- W3148730244 hasConceptScore W3148730244C105795698 @default.
- W3148730244 hasConceptScore W3148730244C11413529 @default.
- W3148730244 hasConceptScore W3148730244C125112378 @default.
- W3148730244 hasConceptScore W3148730244C154945302 @default.
- W3148730244 hasConceptScore W3148730244C18903297 @default.
- W3148730244 hasConceptScore W3148730244C2776321320 @default.
- W3148730244 hasConceptScore W3148730244C2777299769 @default.
- W3148730244 hasConceptScore W3148730244C33923547 @default.
- W3148730244 hasConceptScore W3148730244C41008148 @default.
- W3148730244 hasConceptScore W3148730244C86803240 @default.
- W3148730244 hasFunder F4320306076 @default.
- W3148730244 hasIssue "2" @default.
- W3148730244 hasLocation W31487302441 @default.
- W3148730244 hasLocation W31487302442 @default.
- W3148730244 hasOpenAccess W3148730244 @default.
- W3148730244 hasPrimaryLocation W31487302441 @default.
- W3148730244 hasRelatedWork W151193258 @default.
- W3148730244 hasRelatedWork W1529400504 @default.
- W3148730244 hasRelatedWork W1871911958 @default.
- W3148730244 hasRelatedWork W1892467659 @default.
- W3148730244 hasRelatedWork W2348710178 @default.
- W3148730244 hasRelatedWork W2349865494 @default.
- W3148730244 hasRelatedWork W2808586768 @default.
- W3148730244 hasRelatedWork W2998403542 @default.
- W3148730244 hasRelatedWork W3201926073 @default.
- W3148730244 hasRelatedWork W73525116 @default.
- W3148730244 hasVolume "35" @default.
- W3148730244 isParatext "false" @default.
- W3148730244 isRetracted "false" @default.
- W3148730244 magId "3148730244" @default.
- W3148730244 workType "article" @default.