Matches in SemOpenAlex for { <https://semopenalex.org/work/W3148730259> ?p ?o ?g. }
- W3148730259 abstract "We consider the classical problem of estimating the covariance matrix of a sub-Gaussian distribution from i.i.d. samples in the novel context of coarse quantization, that is, instead of having full knowledge of the samples, they are quantized to one or two bits per entry. This problem occurs naturally in signal processing applications. We introduce new estimators in two different quantization scenarios and derive nonasymptotic estimation error bounds in terms of the operator norm. In the first scenario, we consider a simple, scale-invariant one-bit quantizer and derive an estimation result for the correlation matrix of a centered Gaussian distribution. In the second scenario, we add random dithering to the quantizer. In this case, we can accurately estimate the full covariance matrix of a general sub-Gaussian distribution by collecting two bits per entry of each sample. In both scenarios, our bounds apply to masked covariance estimation. We demonstrate the near optimality of our error bounds by deriving corresponding (minimax) lower bounds and using numerical simulations." @default.
- W3148730259 created "2021-04-13" @default.
- W3148730259 creator A5005201576 @default.
- W3148730259 creator A5009463062 @default.
- W3148730259 creator A5063241706 @default.
- W3148730259 date "2022-12-01" @default.
- W3148730259 modified "2023-10-16" @default.
- W3148730259 title "Covariance estimation under one-bit quantization" @default.
- W3148730259 cites W1524609055 @default.
- W3148730259 cites W1581041165 @default.
- W3148730259 cites W1605194072 @default.
- W3148730259 cites W1776974347 @default.
- W3148730259 cites W1963785789 @default.
- W3148730259 cites W2000470657 @default.
- W3148730259 cites W2023674145 @default.
- W3148730259 cites W2044825056 @default.
- W3148730259 cites W2053637529 @default.
- W3148730259 cites W2068135051 @default.
- W3148730259 cites W2071824193 @default.
- W3148730259 cites W2084913894 @default.
- W3148730259 cites W2094644779 @default.
- W3148730259 cites W2100403032 @default.
- W3148730259 cites W2112038498 @default.
- W3148730259 cites W2127989808 @default.
- W3148730259 cites W2133834334 @default.
- W3148730259 cites W2144164089 @default.
- W3148730259 cites W2162654459 @default.
- W3148730259 cites W2165408259 @default.
- W3148730259 cites W2293423476 @default.
- W3148730259 cites W2294622949 @default.
- W3148730259 cites W2524946712 @default.
- W3148730259 cites W2526144952 @default.
- W3148730259 cites W2798157611 @default.
- W3148730259 cites W2963469519 @default.
- W3148730259 cites W2964003909 @default.
- W3148730259 cites W2964322027 @default.
- W3148730259 cites W2968828697 @default.
- W3148730259 cites W2979685185 @default.
- W3148730259 cites W3043175749 @default.
- W3148730259 cites W3098045837 @default.
- W3148730259 cites W3098365576 @default.
- W3148730259 cites W3099609308 @default.
- W3148730259 cites W3099857106 @default.
- W3148730259 cites W3100363164 @default.
- W3148730259 cites W3101788651 @default.
- W3148730259 cites W3103699839 @default.
- W3148730259 cites W3124414132 @default.
- W3148730259 cites W3165260969 @default.
- W3148730259 cites W4250589301 @default.
- W3148730259 cites W4250954493 @default.
- W3148730259 cites W4254197176 @default.
- W3148730259 cites W4298873666 @default.
- W3148730259 doi "https://doi.org/10.1214/22-aos2239" @default.
- W3148730259 hasPublicationYear "2022" @default.
- W3148730259 type Work @default.
- W3148730259 sameAs 3148730259 @default.
- W3148730259 citedByCount "2" @default.
- W3148730259 countsByYear W31487302592023 @default.
- W3148730259 crossrefType "journal-article" @default.
- W3148730259 hasAuthorship W3148730259A5005201576 @default.
- W3148730259 hasAuthorship W3148730259A5009463062 @default.
- W3148730259 hasAuthorship W3148730259A5063241706 @default.
- W3148730259 hasBestOaLocation W31487302592 @default.
- W3148730259 hasConcept C105795698 @default.
- W3148730259 hasConcept C11413529 @default.
- W3148730259 hasConcept C121332964 @default.
- W3148730259 hasConcept C126255220 @default.
- W3148730259 hasConcept C149728462 @default.
- W3148730259 hasConcept C163716315 @default.
- W3148730259 hasConcept C178650346 @default.
- W3148730259 hasConcept C180877172 @default.
- W3148730259 hasConcept C185142706 @default.
- W3148730259 hasConcept C185429906 @default.
- W3148730259 hasConcept C28826006 @default.
- W3148730259 hasConcept C28855332 @default.
- W3148730259 hasConcept C31972630 @default.
- W3148730259 hasConcept C33923547 @default.
- W3148730259 hasConcept C41008148 @default.
- W3148730259 hasConcept C62520636 @default.
- W3148730259 hasConcept C70451592 @default.
- W3148730259 hasConcept C9083635 @default.
- W3148730259 hasConceptScore W3148730259C105795698 @default.
- W3148730259 hasConceptScore W3148730259C11413529 @default.
- W3148730259 hasConceptScore W3148730259C121332964 @default.
- W3148730259 hasConceptScore W3148730259C126255220 @default.
- W3148730259 hasConceptScore W3148730259C149728462 @default.
- W3148730259 hasConceptScore W3148730259C163716315 @default.
- W3148730259 hasConceptScore W3148730259C178650346 @default.
- W3148730259 hasConceptScore W3148730259C180877172 @default.
- W3148730259 hasConceptScore W3148730259C185142706 @default.
- W3148730259 hasConceptScore W3148730259C185429906 @default.
- W3148730259 hasConceptScore W3148730259C28826006 @default.
- W3148730259 hasConceptScore W3148730259C28855332 @default.
- W3148730259 hasConceptScore W3148730259C31972630 @default.
- W3148730259 hasConceptScore W3148730259C33923547 @default.
- W3148730259 hasConceptScore W3148730259C41008148 @default.
- W3148730259 hasConceptScore W3148730259C62520636 @default.
- W3148730259 hasConceptScore W3148730259C70451592 @default.
- W3148730259 hasConceptScore W3148730259C9083635 @default.
- W3148730259 hasIssue "6" @default.