Matches in SemOpenAlex for { <https://semopenalex.org/work/W3148765013> ?p ?o ?g. }
- W3148765013 endingPage "142" @default.
- W3148765013 startingPage "134" @default.
- W3148765013 abstract "The last half-century has witnessed an astronomical rise in the number of tall building projects in urban centers globally. These projects however frequently experience delays and total abandonment due to economic reasons. This study presents the application of Machine Learning techniques in the systematic development of a model to estimate the preliminary cost of tall building projects. The techniques considered include Multi-Linear Regression Analysis (MLRA), k-Nearest Neighbors (KNN), Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Multi Classifier Systems. Twelve models were developed and compared using standard performance metrics. The results revealed that the best performing model was based on a Multi Classifier System using KNN as the combining classifier, with a Correlation Coefficient (R2) of 0.81, Root Mean Squared Error (RMSE) of 6.09, and Mean Absolute Percentage Error (MAPE) of 80.95%. This research showed the potential of modern digital technologies such as machine learning to solve problems of the construction industry. The procedure described in this study is of significant value to research and practice in the development of preliminary cost estimation models. The developed model can function as a decision support tool in the preliminary cost estimation stage of tall building projects." @default.
- W3148765013 created "2021-04-13" @default.
- W3148765013 creator A5009096022 @default.
- W3148765013 creator A5052676038 @default.
- W3148765013 creator A5078159858 @default.
- W3148765013 date "2021-04-01" @default.
- W3148765013 modified "2023-09-24" @default.
- W3148765013 title "Developing a preliminary cost estimation model for tall buildings based on machine learning" @default.
- W3148765013 cites W1967880236 @default.
- W3148765013 cites W1992699707 @default.
- W3148765013 cites W1995540032 @default.
- W3148765013 cites W2005071274 @default.
- W3148765013 cites W2015920770 @default.
- W3148765013 cites W2031175291 @default.
- W3148765013 cites W2060066667 @default.
- W3148765013 cites W2060659738 @default.
- W3148765013 cites W2063913566 @default.
- W3148765013 cites W2075612198 @default.
- W3148765013 cites W2079847520 @default.
- W3148765013 cites W2113599721 @default.
- W3148765013 cites W2124322546 @default.
- W3148765013 cites W2139581178 @default.
- W3148765013 cites W2143455647 @default.
- W3148765013 cites W2145960214 @default.
- W3148765013 cites W2150536746 @default.
- W3148765013 cites W2312064915 @default.
- W3148765013 cites W2327274774 @default.
- W3148765013 cites W2395707072 @default.
- W3148765013 cites W2515066371 @default.
- W3148765013 cites W2574703661 @default.
- W3148765013 cites W2782750122 @default.
- W3148765013 cites W2904313980 @default.
- W3148765013 cites W2958360836 @default.
- W3148765013 cites W3008016080 @default.
- W3148765013 cites W3025866738 @default.
- W3148765013 cites W3026639948 @default.
- W3148765013 cites W3040469838 @default.
- W3148765013 cites W3079064409 @default.
- W3148765013 cites W3081776292 @default.
- W3148765013 cites W567773756 @default.
- W3148765013 cites W604960715 @default.
- W3148765013 doi "https://doi.org/10.1080/17509653.2021.1905568" @default.
- W3148765013 hasPublicationYear "2021" @default.
- W3148765013 type Work @default.
- W3148765013 sameAs 3148765013 @default.
- W3148765013 citedByCount "12" @default.
- W3148765013 countsByYear W31487650132021 @default.
- W3148765013 countsByYear W31487650132022 @default.
- W3148765013 countsByYear W31487650132023 @default.
- W3148765013 crossrefType "journal-article" @default.
- W3148765013 hasAuthorship W3148765013A5009096022 @default.
- W3148765013 hasAuthorship W3148765013A5052676038 @default.
- W3148765013 hasAuthorship W3148765013A5078159858 @default.
- W3148765013 hasConcept C105795698 @default.
- W3148765013 hasConcept C119857082 @default.
- W3148765013 hasConcept C12267149 @default.
- W3148765013 hasConcept C124101348 @default.
- W3148765013 hasConcept C127413603 @default.
- W3148765013 hasConcept C139945424 @default.
- W3148765013 hasConcept C150217764 @default.
- W3148765013 hasConcept C154945302 @default.
- W3148765013 hasConcept C169258074 @default.
- W3148765013 hasConcept C188154048 @default.
- W3148765013 hasConcept C201995342 @default.
- W3148765013 hasConcept C33923547 @default.
- W3148765013 hasConcept C41008148 @default.
- W3148765013 hasConcept C50644808 @default.
- W3148765013 hasConcept C93983250 @default.
- W3148765013 hasConcept C95623464 @default.
- W3148765013 hasConceptScore W3148765013C105795698 @default.
- W3148765013 hasConceptScore W3148765013C119857082 @default.
- W3148765013 hasConceptScore W3148765013C12267149 @default.
- W3148765013 hasConceptScore W3148765013C124101348 @default.
- W3148765013 hasConceptScore W3148765013C127413603 @default.
- W3148765013 hasConceptScore W3148765013C139945424 @default.
- W3148765013 hasConceptScore W3148765013C150217764 @default.
- W3148765013 hasConceptScore W3148765013C154945302 @default.
- W3148765013 hasConceptScore W3148765013C169258074 @default.
- W3148765013 hasConceptScore W3148765013C188154048 @default.
- W3148765013 hasConceptScore W3148765013C201995342 @default.
- W3148765013 hasConceptScore W3148765013C33923547 @default.
- W3148765013 hasConceptScore W3148765013C41008148 @default.
- W3148765013 hasConceptScore W3148765013C50644808 @default.
- W3148765013 hasConceptScore W3148765013C93983250 @default.
- W3148765013 hasConceptScore W3148765013C95623464 @default.
- W3148765013 hasIssue "2" @default.
- W3148765013 hasLocation W31487650131 @default.
- W3148765013 hasOpenAccess W3148765013 @default.
- W3148765013 hasPrimaryLocation W31487650131 @default.
- W3148765013 hasRelatedWork W2008453766 @default.
- W3148765013 hasRelatedWork W2037316683 @default.
- W3148765013 hasRelatedWork W2979979539 @default.
- W3148765013 hasRelatedWork W3012287563 @default.
- W3148765013 hasRelatedWork W3195168932 @default.
- W3148765013 hasRelatedWork W4205958290 @default.
- W3148765013 hasRelatedWork W4251731838 @default.
- W3148765013 hasRelatedWork W4281799626 @default.
- W3148765013 hasRelatedWork W4320483443 @default.