Matches in SemOpenAlex for { <https://semopenalex.org/work/W3148869078> ?p ?o ?g. }
- W3148869078 endingPage "646" @default.
- W3148869078 startingPage "646" @default.
- W3148869078 abstract "Precision agriculture is a crucial way to achieve greater yields by utilizing the natural deposits in a diverse environment. The yield of a crop may vary from year to year depending on the variations in climate, soil parameters and fertilizers used. Automation in the agricultural industry moderates the usage of resources and can increase the quality of food in the post-pandemic world. Agricultural robots have been developed for crop seeding, monitoring, weed control, pest management and harvesting. Physical counting of fruitlets, flowers or fruits at various phases of growth is labour intensive as well as an expensive procedure for crop yield estimation. Remote sensing technologies offer accuracy and reliability in crop yield prediction and estimation. The automation in image analysis with computer vision and deep learning models provides precise field and yield maps. In this review, it has been observed that the application of deep learning techniques has provided a better accuracy for smart farming. The crops taken for the study are fruits such as grapes, apples, citrus, tomatoes and vegetables such as sugarcane, corn, soybean, cucumber, maize, wheat. The research works which are carried out in this research paper are available as products for applications such as robot harvesting, weed detection and pest infestation. The methods which made use of conventional deep learning techniques have provided an average accuracy of 92.51%. This paper elucidates the diverse automation approaches for crop yield detection techniques with virtual analysis and classifier approaches. Technical hitches in the deep learning techniques have progressed with limitations and future investigations are also surveyed. This work highlights the machine vision and deep learning models which need to be explored for improving automated precision farming expressly during this pandemic." @default.
- W3148869078 created "2021-04-13" @default.
- W3148869078 creator A5020389246 @default.
- W3148869078 creator A5061142267 @default.
- W3148869078 creator A5068299733 @default.
- W3148869078 creator A5068349776 @default.
- W3148869078 creator A5089958411 @default.
- W3148869078 date "2021-03-27" @default.
- W3148869078 modified "2023-10-14" @default.
- W3148869078 title "Recognition of Bloom/Yield in Crop Images Using Deep Learning Models for Smart Agriculture: A Review" @default.
- W3148869078 cites W1467531035 @default.
- W3148869078 cites W1484506552 @default.
- W3148869078 cites W1925668245 @default.
- W3148869078 cites W1966035399 @default.
- W3148869078 cites W1971883950 @default.
- W3148869078 cites W1978931600 @default.
- W3148869078 cites W1980180011 @default.
- W3148869078 cites W1980623462 @default.
- W3148869078 cites W1990867917 @default.
- W3148869078 cites W2018563411 @default.
- W3148869078 cites W2023766889 @default.
- W3148869078 cites W2028045291 @default.
- W3148869078 cites W2048368939 @default.
- W3148869078 cites W2062599688 @default.
- W3148869078 cites W2064352738 @default.
- W3148869078 cites W2072093516 @default.
- W3148869078 cites W2078192021 @default.
- W3148869078 cites W2085847360 @default.
- W3148869078 cites W2094766409 @default.
- W3148869078 cites W2098976163 @default.
- W3148869078 cites W2102505197 @default.
- W3148869078 cites W2116905012 @default.
- W3148869078 cites W2128866545 @default.
- W3148869078 cites W2138632244 @default.
- W3148869078 cites W2145488820 @default.
- W3148869078 cites W2199275510 @default.
- W3148869078 cites W2231576311 @default.
- W3148869078 cites W2293491734 @default.
- W3148869078 cites W2296104201 @default.
- W3148869078 cites W2297155941 @default.
- W3148869078 cites W2396098103 @default.
- W3148869078 cites W2413122674 @default.
- W3148869078 cites W2483888092 @default.
- W3148869078 cites W2501369945 @default.
- W3148869078 cites W2501700740 @default.
- W3148869078 cites W2523192248 @default.
- W3148869078 cites W2528895427 @default.
- W3148869078 cites W2543665758 @default.
- W3148869078 cites W2555871806 @default.
- W3148869078 cites W2572262262 @default.
- W3148869078 cites W2599640908 @default.
- W3148869078 cites W2608799977 @default.
- W3148869078 cites W2611227133 @default.
- W3148869078 cites W2614850301 @default.
- W3148869078 cites W2619485203 @default.
- W3148869078 cites W2625680238 @default.
- W3148869078 cites W2647990618 @default.
- W3148869078 cites W2724373901 @default.
- W3148869078 cites W2745457250 @default.
- W3148869078 cites W2762917058 @default.
- W3148869078 cites W2768136227 @default.
- W3148869078 cites W2775236001 @default.
- W3148869078 cites W2787095293 @default.
- W3148869078 cites W2789255992 @default.
- W3148869078 cites W2789726530 @default.
- W3148869078 cites W2799842361 @default.
- W3148869078 cites W2806658743 @default.
- W3148869078 cites W2809489825 @default.
- W3148869078 cites W2809512934 @default.
- W3148869078 cites W2809666330 @default.
- W3148869078 cites W2810736079 @default.
- W3148869078 cites W2866175125 @default.
- W3148869078 cites W2884552351 @default.
- W3148869078 cites W2886330227 @default.
- W3148869078 cites W2891333021 @default.
- W3148869078 cites W2896736480 @default.
- W3148869078 cites W2899968057 @default.
- W3148869078 cites W2903703585 @default.
- W3148869078 cites W2908023630 @default.
- W3148869078 cites W2913720723 @default.
- W3148869078 cites W2937772171 @default.
- W3148869078 cites W2941020577 @default.
- W3148869078 cites W2942551514 @default.
- W3148869078 cites W2946809859 @default.
- W3148869078 cites W2948594986 @default.
- W3148869078 cites W2949607349 @default.
- W3148869078 cites W2952110468 @default.
- W3148869078 cites W2953686964 @default.
- W3148869078 cites W2955984505 @default.
- W3148869078 cites W2957670377 @default.
- W3148869078 cites W2958626453 @default.
- W3148869078 cites W2960779155 @default.
- W3148869078 cites W2963912358 @default.
- W3148869078 cites W2966657623 @default.
- W3148869078 cites W2968952932 @default.
- W3148869078 cites W2969691610 @default.
- W3148869078 cites W2970012058 @default.
- W3148869078 cites W2974511126 @default.