Matches in SemOpenAlex for { <https://semopenalex.org/work/W3148970831> ?p ?o ?g. }
- W3148970831 endingPage "1913" @default.
- W3148970831 startingPage "1900" @default.
- W3148970831 abstract "Transfer learning algorithm can provide a framework to utilize the previous knowledge to train fuzzy neural network (FNN). However, the performance of TL-based FNN will be destroyed by the knowledge over-fitting problem in the learning process. To solve this problem, an interactive transfer learning (ITL) algorithm, which can alleviate the negative transfer among different domains to improve the learning performance of FNN, is designed and analyzed in this article. This ITL-assisted FNN (ITL-FNN) contains the following advantages. First, a knowledge filter algorithm is developed to reconstruct the knowledge in source scene by balancing the matching accuracy and diversity. Then, the knowledge from source scene can fit the instance of target scene with suitable accuracy. Second, a self-balancing mechanism is designed to balance the driven information between the source and target scenes. Then, the knowledge can be refitted to reduce the useless information. Third, a structural competition algorithm is proposed to adjust the knowledge of FNN. Then, the proposed ITL-FNN can achieve compact structure to improve the generalization performance. Finally, some benchmark problems and industrial applications are provided to demonstrate the merits of ITL-FNN." @default.
- W3148970831 created "2021-04-13" @default.
- W3148970831 creator A5036537916 @default.
- W3148970831 creator A5055432844 @default.
- W3148970831 creator A5072240057 @default.
- W3148970831 creator A5084701732 @default.
- W3148970831 date "2022-06-01" @default.
- W3148970831 modified "2023-10-11" @default.
- W3148970831 title "Interactive Transfer Learning-Assisted Fuzzy Neural Network" @default.
- W3148970831 cites W180210362 @default.
- W3148970831 cites W1964494592 @default.
- W3148970831 cites W1974698372 @default.
- W3148970831 cites W1986614398 @default.
- W3148970831 cites W1994348648 @default.
- W3148970831 cites W2002917851 @default.
- W3148970831 cites W2005096544 @default.
- W3148970831 cites W2013044826 @default.
- W3148970831 cites W2031950024 @default.
- W3148970831 cites W2041775680 @default.
- W3148970831 cites W2052345845 @default.
- W3148970831 cites W2053836403 @default.
- W3148970831 cites W2055211875 @default.
- W3148970831 cites W2057884405 @default.
- W3148970831 cites W2062907052 @default.
- W3148970831 cites W2088866250 @default.
- W3148970831 cites W2100664256 @default.
- W3148970831 cites W2108165677 @default.
- W3148970831 cites W2120149881 @default.
- W3148970831 cites W2142904341 @default.
- W3148970831 cites W2152623177 @default.
- W3148970831 cites W2170262723 @default.
- W3148970831 cites W2240559667 @default.
- W3148970831 cites W2328765253 @default.
- W3148970831 cites W2341914330 @default.
- W3148970831 cites W2343174050 @default.
- W3148970831 cites W2417420127 @default.
- W3148970831 cites W2557279148 @default.
- W3148970831 cites W2583496274 @default.
- W3148970831 cites W2588646734 @default.
- W3148970831 cites W2602480929 @default.
- W3148970831 cites W2605953417 @default.
- W3148970831 cites W2750599140 @default.
- W3148970831 cites W2768753807 @default.
- W3148970831 cites W2780303664 @default.
- W3148970831 cites W2803375486 @default.
- W3148970831 cites W2857279780 @default.
- W3148970831 cites W2883544631 @default.
- W3148970831 cites W2898199744 @default.
- W3148970831 cites W2904114471 @default.
- W3148970831 cites W2909535983 @default.
- W3148970831 cites W2918882650 @default.
- W3148970831 cites W2946296475 @default.
- W3148970831 cites W2964805495 @default.
- W3148970831 cites W2969794922 @default.
- W3148970831 cites W2997304337 @default.
- W3148970831 cites W3003339128 @default.
- W3148970831 cites W605348272 @default.
- W3148970831 doi "https://doi.org/10.1109/tfuzz.2021.3070156" @default.
- W3148970831 hasPublicationYear "2022" @default.
- W3148970831 type Work @default.
- W3148970831 sameAs 3148970831 @default.
- W3148970831 citedByCount "3" @default.
- W3148970831 countsByYear W31489708312022 @default.
- W3148970831 countsByYear W31489708312023 @default.
- W3148970831 crossrefType "journal-article" @default.
- W3148970831 hasAuthorship W3148970831A5036537916 @default.
- W3148970831 hasAuthorship W3148970831A5055432844 @default.
- W3148970831 hasAuthorship W3148970831A5072240057 @default.
- W3148970831 hasAuthorship W3148970831A5084701732 @default.
- W3148970831 hasConcept C105795698 @default.
- W3148970831 hasConcept C111919701 @default.
- W3148970831 hasConcept C119857082 @default.
- W3148970831 hasConcept C13280743 @default.
- W3148970831 hasConcept C134306372 @default.
- W3148970831 hasConcept C150899416 @default.
- W3148970831 hasConcept C154945302 @default.
- W3148970831 hasConcept C165064840 @default.
- W3148970831 hasConcept C177148314 @default.
- W3148970831 hasConcept C185798385 @default.
- W3148970831 hasConcept C205649164 @default.
- W3148970831 hasConcept C2776960227 @default.
- W3148970831 hasConcept C33923547 @default.
- W3148970831 hasConcept C41008148 @default.
- W3148970831 hasConcept C50644808 @default.
- W3148970831 hasConcept C56739046 @default.
- W3148970831 hasConcept C58166 @default.
- W3148970831 hasConcept C98045186 @default.
- W3148970831 hasConceptScore W3148970831C105795698 @default.
- W3148970831 hasConceptScore W3148970831C111919701 @default.
- W3148970831 hasConceptScore W3148970831C119857082 @default.
- W3148970831 hasConceptScore W3148970831C13280743 @default.
- W3148970831 hasConceptScore W3148970831C134306372 @default.
- W3148970831 hasConceptScore W3148970831C150899416 @default.
- W3148970831 hasConceptScore W3148970831C154945302 @default.
- W3148970831 hasConceptScore W3148970831C165064840 @default.
- W3148970831 hasConceptScore W3148970831C177148314 @default.
- W3148970831 hasConceptScore W3148970831C185798385 @default.
- W3148970831 hasConceptScore W3148970831C205649164 @default.