Matches in SemOpenAlex for { <https://semopenalex.org/work/W3148994753> ?p ?o ?g. }
- W3148994753 abstract "Genetic co-expression network (GCN) analysis augments the understanding of breast cancer (BC). We aimed to propose GCN-based modeling for BC relapse-free survival (RFS) prediction and to discover novel biomarkers. We used GCN and Cox proportional hazard regression to create various prediction models using mRNA microarray of 920 tumors and conduct external validation using independent data of 1056 tumors. GCNs of 34 identified candidate genes were plotted in various sizes. Compared to the reference model, the genetic predictors selected from bigger GCNs composed better prediction models. The prediction accuracy and AUC of 3 ~ 15-year RFS are 71.0-81.4% and 74.6-78% respectively (rfm, ACC 63.2-65.5%, AUC 61.9-74.9%). The hazard ratios of risk scores of developing relapse ranged from 1.89 ~ 3.32 (p < 10-8) over all models under the control of the node status. External validation showed the consistent finding. We found top 12 co-expressed genes are relative new or novel biomarkers that have not been explored in BC prognosis or other cancers until this decade. GCN-based modeling creates better prediction models and facilitates novel genes exploration on BC prognosis." @default.
- W3148994753 created "2021-04-13" @default.
- W3148994753 creator A5002133706 @default.
- W3148994753 creator A5006460585 @default.
- W3148994753 creator A5007442498 @default.
- W3148994753 creator A5010045308 @default.
- W3148994753 creator A5017247569 @default.
- W3148994753 creator A5019648923 @default.
- W3148994753 creator A5027310614 @default.
- W3148994753 creator A5029285453 @default.
- W3148994753 creator A5034781404 @default.
- W3148994753 creator A5036777893 @default.
- W3148994753 creator A5038656057 @default.
- W3148994753 creator A5041463301 @default.
- W3148994753 creator A5042759244 @default.
- W3148994753 creator A5050477625 @default.
- W3148994753 creator A5058074694 @default.
- W3148994753 creator A5068805925 @default.
- W3148994753 creator A5069625869 @default.
- W3148994753 creator A5073225510 @default.
- W3148994753 creator A5077568354 @default.
- W3148994753 creator A5080775969 @default.
- W3148994753 creator A5084884710 @default.
- W3148994753 date "2021-03-31" @default.
- W3148994753 modified "2023-10-18" @default.
- W3148994753 title "Genetic co-expression networks contribute to creating predictive model and exploring novel biomarkers for the prognosis of breast cancer" @default.
- W3148994753 cites W1271389891 @default.
- W3148994753 cites W1486051248 @default.
- W3148994753 cites W1493742659 @default.
- W3148994753 cites W1858703699 @default.
- W3148994753 cites W1956783319 @default.
- W3148994753 cites W1972892706 @default.
- W3148994753 cites W1976173969 @default.
- W3148994753 cites W1980076480 @default.
- W3148994753 cites W1982090512 @default.
- W3148994753 cites W1987029023 @default.
- W3148994753 cites W1990903366 @default.
- W3148994753 cites W1994127846 @default.
- W3148994753 cites W2000934726 @default.
- W3148994753 cites W2006593535 @default.
- W3148994753 cites W2040957831 @default.
- W3148994753 cites W2051542850 @default.
- W3148994753 cites W2052938577 @default.
- W3148994753 cites W2070418597 @default.
- W3148994753 cites W2083900953 @default.
- W3148994753 cites W2085223541 @default.
- W3148994753 cites W2092677877 @default.
- W3148994753 cites W2102364900 @default.
- W3148994753 cites W2112953387 @default.
- W3148994753 cites W2115737748 @default.
- W3148994753 cites W2115984935 @default.
- W3148994753 cites W2118413367 @default.
- W3148994753 cites W2130410032 @default.
- W3148994753 cites W2142125950 @default.
- W3148994753 cites W2143571262 @default.
- W3148994753 cites W2145135780 @default.
- W3148994753 cites W2146320559 @default.
- W3148994753 cites W2148390682 @default.
- W3148994753 cites W2150671673 @default.
- W3148994753 cites W2152667098 @default.
- W3148994753 cites W2163563958 @default.
- W3148994753 cites W2278123302 @default.
- W3148994753 cites W2280704516 @default.
- W3148994753 cites W2469615413 @default.
- W3148994753 cites W2470769108 @default.
- W3148994753 cites W2519615699 @default.
- W3148994753 cites W2526253442 @default.
- W3148994753 cites W2547644939 @default.
- W3148994753 cites W2561960501 @default.
- W3148994753 cites W2582723358 @default.
- W3148994753 cites W2590756052 @default.
- W3148994753 cites W2604847258 @default.
- W3148994753 cites W2610427048 @default.
- W3148994753 cites W2621976441 @default.
- W3148994753 cites W2888987199 @default.
- W3148994753 cites W2914216785 @default.
- W3148994753 cites W2921521376 @default.
- W3148994753 cites W2945139835 @default.
- W3148994753 cites W2954434281 @default.
- W3148994753 cites W2966042108 @default.
- W3148994753 cites W2970322015 @default.
- W3148994753 cites W2971933821 @default.
- W3148994753 cites W2996248395 @default.
- W3148994753 cites W2999992004 @default.
- W3148994753 cites W3003289748 @default.
- W3148994753 cites W3005660249 @default.
- W3148994753 cites W3016255844 @default.
- W3148994753 cites W3018190264 @default.
- W3148994753 cites W3021255378 @default.
- W3148994753 cites W3043513934 @default.
- W3148994753 cites W3047150668 @default.
- W3148994753 cites W3094071694 @default.
- W3148994753 cites W3094916061 @default.
- W3148994753 cites W4242016446 @default.
- W3148994753 cites W572546044 @default.
- W3148994753 doi "https://doi.org/10.1038/s41598-021-84995-z" @default.
- W3148994753 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8012617" @default.
- W3148994753 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33790307" @default.
- W3148994753 hasPublicationYear "2021" @default.
- W3148994753 type Work @default.