Matches in SemOpenAlex for { <https://semopenalex.org/work/W3149018868> ?p ?o ?g. }
- W3149018868 endingPage "85" @default.
- W3149018868 startingPage "69" @default.
- W3149018868 abstract "Precision Medicine has emerged as a preventive, diagnostic and treatment tool to approach human diseases in a personalized manner. Since precision medicine incorporates omics data and knowledge in personal health records, people who live in industrially polluted areas have an advantage in the medicinal field. Integration of non-omics data and related biological knowledge in term omics data is a reality. The heterogenic characteristics of non-omics data and high dimensional omics data makes the integration challengeable. Hard data analytics problems create better opportunities in analytics. This review cut across the boundaries of machine learning models for the eventual development of a successful precision medicine forecast model, different strategies for the integration of non-omics data and omics data, limitations and challenges in data integration, and future directions for the precision medicine forecasts. The literature also discusses non-omics data, diseases associated with air pollutants, and omics data. This information gives insight to the integrated data analytics and their application in future project implications. It intends to motivate researchers and precision medicine forecast model developers in a global integrative analytical approach." @default.
- W3149018868 created "2021-04-13" @default.
- W3149018868 creator A5021234960 @default.
- W3149018868 creator A5045159488 @default.
- W3149018868 date "2021-03-24" @default.
- W3149018868 modified "2023-09-27" @default.
- W3149018868 title "Machine learning for precision medicine forecasts and challenges when incorporating non omics and omics data" @default.
- W3149018868 cites W1983755230 @default.
- W3149018868 cites W2019577055 @default.
- W3149018868 cites W2031904641 @default.
- W3149018868 cites W2074973972 @default.
- W3149018868 cites W2101154649 @default.
- W3149018868 cites W2126745010 @default.
- W3149018868 cites W2128985829 @default.
- W3149018868 cites W2130831435 @default.
- W3149018868 cites W2157713029 @default.
- W3149018868 cites W2159498276 @default.
- W3149018868 cites W2160056887 @default.
- W3149018868 cites W2161784556 @default.
- W3149018868 cites W2167769381 @default.
- W3149018868 cites W2176258934 @default.
- W3149018868 cites W2202715525 @default.
- W3149018868 cites W2264272133 @default.
- W3149018868 cites W2294999057 @default.
- W3149018868 cites W2345630062 @default.
- W3149018868 cites W2410143861 @default.
- W3149018868 cites W2500760875 @default.
- W3149018868 cites W2512752893 @default.
- W3149018868 cites W2522738868 @default.
- W3149018868 cites W2529567951 @default.
- W3149018868 cites W2530656418 @default.
- W3149018868 cites W2550943591 @default.
- W3149018868 cites W2574929289 @default.
- W3149018868 cites W2583949775 @default.
- W3149018868 cites W2590468396 @default.
- W3149018868 cites W2594649246 @default.
- W3149018868 cites W2607350314 @default.
- W3149018868 cites W2720445064 @default.
- W3149018868 cites W2733653554 @default.
- W3149018868 cites W2739358848 @default.
- W3149018868 cites W2748718876 @default.
- W3149018868 cites W2754102394 @default.
- W3149018868 cites W2767412527 @default.
- W3149018868 cites W2768109521 @default.
- W3149018868 cites W2775922218 @default.
- W3149018868 cites W2790173628 @default.
- W3149018868 cites W2792883041 @default.
- W3149018868 cites W2884724578 @default.
- W3149018868 cites W2892288330 @default.
- W3149018868 cites W2895671827 @default.
- W3149018868 cites W2899016929 @default.
- W3149018868 cites W2902240328 @default.
- W3149018868 cites W2907716967 @default.
- W3149018868 cites W2909327627 @default.
- W3149018868 cites W2914622272 @default.
- W3149018868 cites W2921518676 @default.
- W3149018868 cites W2924366642 @default.
- W3149018868 cites W2940357664 @default.
- W3149018868 cites W2951209146 @default.
- W3149018868 cites W2981017483 @default.
- W3149018868 cites W2998957378 @default.
- W3149018868 cites W3022501708 @default.
- W3149018868 cites W3024801014 @default.
- W3149018868 cites W4236354166 @default.
- W3149018868 cites W634619152 @default.
- W3149018868 doi "https://doi.org/10.3233/idt-200044" @default.
- W3149018868 hasPublicationYear "2021" @default.
- W3149018868 type Work @default.
- W3149018868 sameAs 3149018868 @default.
- W3149018868 citedByCount "0" @default.
- W3149018868 crossrefType "journal-article" @default.
- W3149018868 hasAuthorship W3149018868A5021234960 @default.
- W3149018868 hasAuthorship W3149018868A5045159488 @default.
- W3149018868 hasConcept C124101348 @default.
- W3149018868 hasConcept C142724271 @default.
- W3149018868 hasConcept C157585117 @default.
- W3149018868 hasConcept C163763905 @default.
- W3149018868 hasConcept C175801342 @default.
- W3149018868 hasConcept C2522767166 @default.
- W3149018868 hasConcept C32220436 @default.
- W3149018868 hasConcept C41008148 @default.
- W3149018868 hasConcept C60644358 @default.
- W3149018868 hasConcept C71924100 @default.
- W3149018868 hasConcept C72634772 @default.
- W3149018868 hasConcept C75684735 @default.
- W3149018868 hasConcept C79158427 @default.
- W3149018868 hasConcept C86803240 @default.
- W3149018868 hasConceptScore W3149018868C124101348 @default.
- W3149018868 hasConceptScore W3149018868C142724271 @default.
- W3149018868 hasConceptScore W3149018868C157585117 @default.
- W3149018868 hasConceptScore W3149018868C163763905 @default.
- W3149018868 hasConceptScore W3149018868C175801342 @default.
- W3149018868 hasConceptScore W3149018868C2522767166 @default.
- W3149018868 hasConceptScore W3149018868C32220436 @default.
- W3149018868 hasConceptScore W3149018868C41008148 @default.
- W3149018868 hasConceptScore W3149018868C60644358 @default.
- W3149018868 hasConceptScore W3149018868C71924100 @default.
- W3149018868 hasConceptScore W3149018868C72634772 @default.