Matches in SemOpenAlex for { <https://semopenalex.org/work/W3149169384> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3149169384 endingPage "7" @default.
- W3149169384 startingPage "1" @default.
- W3149169384 abstract "No AccessTechnical NotesTopology Optimization of Base-Excited Structures Considering Maximum Acceleration with Response Spectrum AnalysisDawei Zhou, Yunpeng Li, Sheng Zhang and Biaosong ChenDawei Zhou https://orcid.org/0000-0003-0581-2764State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, 116024 Dalian, People’s Republic of China*Ph.D. Student; .Search for more papers by this author, Yunpeng LiState Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, 116024 Dalian, People’s Republic of China†Associate Professor; .Search for more papers by this author, Sheng ZhangState Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, 116024 Dalian, People’s Republic of China‡Associate Professor; .Search for more papers by this author and Biaosong ChenState Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, 116024 Dalian, People’s Republic of China§Professor; .Search for more papers by this authorPublished Online:31 Mar 2021https://doi.org/10.2514/1.J060157SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Bendsøe M. P. and Kikuchi N., “Generating Optimal Topologies in Structural Design Using a Homogenization Method,” Computer Methods in Applied Mechanics and Engineering, Vol. 71, No. 2, 1988, pp. 197–224. https://doi.org/10.1016/0045-7825(88)90086-2 CrossrefGoogle Scholar[2] Ma Z.-D., Kikuchi N. and Hagiwara I., “Structural Topology and Shape Optimization for a Frequency Response Problem,” Computational Mechanics, Vol. 13, No. 3, 1993, pp. 157–174. https://doi.org/10.1007/BF00370133 CrossrefGoogle Scholar[3] Jog C. S., “Topology Design of Structures Subjected to Periodic Loading,” Journal of Sound and Vibration, Vol. 253, No. 3, 2002, pp. 687–709. https://doi.org/10.1006/jsvi.2001.4075 CrossrefGoogle Scholar[4] Olhoff N. and Du J., “Generalized Incremental Frequency Method for Topological Design of Continuum Structures for Minimum Dynamic Compliance Subject to Forced Vibration at a Prescribed Low or High Value of the Excitation Frequency,” Structural and Multidisciplinary Optimization, Vol. 54, No. 5, 2016, pp. 1113–1141. https://doi.org/10.1007/s00158-016-1574-3 Google Scholar[5] Min S., Kikuchi N., Park Y. C., Kim S. and Chang S., “Optimal Topology Design of Structures Under Dynamic Loads,” Structural Optimization, Vol. 17, Nos. 2–3, 1999, pp. 208–218. https://doi.org/10.1007/s001580050052 CrossrefGoogle Scholar[6] Zhu J.-H., He F., Liu T., Zhang W.-H., Liu Q.-L. and Yang C., “Structural Topology Optimization Under Harmonic Base Acceleration Excitations,” Structural and Multidisciplinary Optimization, Vol. 57, No. 3, 2018, pp. 1061–1078. https://doi.org/10.1007/s00158-017-1795-0 CrossrefGoogle Scholar[7] Yang Y., Zhu M., Shields M. D. and Guest J. K., “Topology Optimization of Continuum Structures Subjected to Filtered White Noise Stochastic Excitations,” Computer Methods in Applied Mechanics and Engineering, Vol. 324, Sept. 2017, pp. 438–456. https://doi.org/10.1016/j.cma.2017.06.015 CrossrefGoogle Scholar[8] Allahdadian S. and Boroomand B., “Topology Optimization of Planar Frames Under Seismic Loads Induced by Actual and Artificial Earthquake Records,” Engineering Structures, Vol. 115, May 2016, pp. 140–154. https://doi.org/10.1016/j.engstruct.2016.02.022 Google Scholar[9] Gupta A. K., Response Spectrum Method in Seismic Analysis and Design of Structures, 1st ed., CRC Press, Boca Raton, FL, 1992, pp. 1–10. Google Scholar[10] Pautre P., Dynamics of Structures, Wiley, Hoboken, NJ, 2013, Chaps. 12, 18. https://doi.org/10.1002/9781118599792 Google Scholar[11] Martin A. and Deierlein G. G., “Structural Topology Optimization of Tall Buildings for Dynamic Seismic Excitation Using Modal Decomposition,” Engineering Structures, Vol. 216, Aug. 2020, Paper 110717. https://doi.org/10.1016/j.engstruct.2020.110717 Google Scholar[12] Zhou M. and Rozvany G., “The Coc Algorithm. 2. Topological, Geometrical and Generalized Shape Optimization,” Computer Methods in Applied Mechanics and Engineering, Vol. 89, Nos. 1–3, 1991, pp. 309–336. https://doi.org/10.1016/0045-7825(91)90046-9 CrossrefGoogle Scholar[13] Stolpe M. and Svanberg K., “An Alternative Interpolation Scheme for Minimum Compliance Topology Optimization,” Structural and Multidisciplinary Optimization, Vol. 22, No. 2, 2001, pp. 116–124. https://doi.org/10.1007/s001580100129 CrossrefGoogle Scholar[14] Rixen D. J., “Generalized Mode Acceleration Methods and Modal Truncation Augmentation,” 19th AIAA Applied Aerodynamics Conference, AIAA Paper 2001-1300, 2001. https://doi.org/10.2514/6.2001-1300 LinkGoogle Scholar[15] Ma Z.-D., Cheng H.-C. and Kikuchi N., “Structural Design for Obtaining Desired Eigenfrequencies by Using the Topology and Shape Optimization Method,” Computing Systems in Engineering, Vol. 5, No. 1, 1994, pp. 77–89. https://doi.org/10.1016/0956-0521(94)90039-6 CrossrefGoogle Scholar[16] Svanberg K., “A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations,” SIAM Journal on Optimization, Vol. 12, No. 2, 2001, pp. 555–573. https://doi.org/10.1137/S1052623499362822 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byComputationally efficient, frequency-domain quadrupole corrections for the Ffowcs Williams and Hawkings equation5 July 2022 | International Journal of Aeroacoustics, Vol. 21, No. 5-7On the Application of Incomplete Ffowcs Williams and Hawkings Surfaces for Aeroacoustic PredictionsTulio R. Ricciardi , William R. Wolf and Philippe R. Spalart 30 November 2021 | AIAA Journal, Vol. 60, No. 3 What's Popular Volume 59, Number 8August 2021 CrossmarkInformationCopyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsApplied MathematicsComputational Fluid DynamicsFinite Element MethodFlexible and Active StructuresFluid DynamicsGeneral PhysicsMathematical AnalysisMathematical OptimizationMechanical and Structural VibrationsShell StructuresStructural AnalysisStructural EngineeringStructural SystemStructures, Design and Test KeywordsTopology OptimizationSpectrum AnalysisResonance FrequenciesSensitivity AnalysisStiffness MatricesPoisson's RatioDynamic ResponseConical ShellFinite Difference MethodStructural Dynamic AnalysisAcknowledgmentsThe authors are grateful for the financial support of the National Key Research and Development Program of China (2016YFB0201602), the National Natural Science Foundation of China (1761131005), the National 111 Project of China (B14013), and the Liaoning Provincial Natural Science Foundation of China (2019-ZD-0021).PDF Received27 November 2020Accepted8 March 2021Published online31 March 2021" @default.
- W3149169384 created "2021-04-13" @default.
- W3149169384 creator A5005328862 @default.
- W3149169384 creator A5009866828 @default.
- W3149169384 creator A5047855118 @default.
- W3149169384 creator A5060952263 @default.
- W3149169384 date "2021-03-31" @default.
- W3149169384 modified "2023-09-27" @default.
- W3149169384 title "Topology Optimization of Base-Excited Structures Considering Maximum Acceleration with Response Spectrum Analysis" @default.
- W3149169384 cites W2004585132 @default.
- W3149169384 cites W2004945242 @default.
- W3149169384 cites W2031007650 @default.
- W3149169384 cites W2069697210 @default.
- W3149169384 cites W2085584298 @default.
- W3149169384 cites W2086969076 @default.
- W3149169384 cites W2142758994 @default.
- W3149169384 cites W2153245297 @default.
- W3149169384 cites W2291618955 @default.
- W3149169384 cites W2325013279 @default.
- W3149169384 cites W2490338749 @default.
- W3149169384 cites W2520076249 @default.
- W3149169384 cites W2631719081 @default.
- W3149169384 cites W2755718060 @default.
- W3149169384 cites W3024872271 @default.
- W3149169384 doi "https://doi.org/10.2514/1.j060157" @default.
- W3149169384 hasPublicationYear "2021" @default.
- W3149169384 type Work @default.
- W3149169384 sameAs 3149169384 @default.
- W3149169384 citedByCount "2" @default.
- W3149169384 countsByYear W31491693842022 @default.
- W3149169384 crossrefType "journal-article" @default.
- W3149169384 hasAuthorship W3149169384A5005328862 @default.
- W3149169384 hasAuthorship W3149169384A5009866828 @default.
- W3149169384 hasAuthorship W3149169384A5047855118 @default.
- W3149169384 hasAuthorship W3149169384A5060952263 @default.
- W3149169384 hasConcept C127413603 @default.
- W3149169384 hasConcept C166957645 @default.
- W3149169384 hasConcept C191935318 @default.
- W3149169384 hasConcept C205649164 @default.
- W3149169384 hasConcept C2984488660 @default.
- W3149169384 hasConcept C41008148 @default.
- W3149169384 hasConcept C78519656 @default.
- W3149169384 hasConceptScore W3149169384C127413603 @default.
- W3149169384 hasConceptScore W3149169384C166957645 @default.
- W3149169384 hasConceptScore W3149169384C191935318 @default.
- W3149169384 hasConceptScore W3149169384C205649164 @default.
- W3149169384 hasConceptScore W3149169384C2984488660 @default.
- W3149169384 hasConceptScore W3149169384C41008148 @default.
- W3149169384 hasConceptScore W3149169384C78519656 @default.
- W3149169384 hasFunder F4320321001 @default.
- W3149169384 hasFunder F4320323086 @default.
- W3149169384 hasFunder F4320327912 @default.
- W3149169384 hasLocation W31491693841 @default.
- W3149169384 hasOpenAccess W3149169384 @default.
- W3149169384 hasPrimaryLocation W31491693841 @default.
- W3149169384 hasRelatedWork W2084097346 @default.
- W3149169384 hasRelatedWork W2154113109 @default.
- W3149169384 hasRelatedWork W2185668231 @default.
- W3149169384 hasRelatedWork W2278001431 @default.
- W3149169384 hasRelatedWork W2366645727 @default.
- W3149169384 hasRelatedWork W2389858093 @default.
- W3149169384 hasRelatedWork W2810275783 @default.
- W3149169384 hasRelatedWork W2899084033 @default.
- W3149169384 hasRelatedWork W3007741508 @default.
- W3149169384 hasRelatedWork W304947547 @default.
- W3149169384 isParatext "false" @default.
- W3149169384 isRetracted "false" @default.
- W3149169384 magId "3149169384" @default.
- W3149169384 workType "article" @default.