Matches in SemOpenAlex for { <https://semopenalex.org/work/W3149177145> ?p ?o ?g. }
- W3149177145 endingPage "104001" @default.
- W3149177145 startingPage "104001" @default.
- W3149177145 abstract "In recent times, machine learning has shown its efficiency in the field of fault diagnosis. Nevertheless, in many real-world applications, the basic data are often collected under the condition of machine working condition change, thereby leading to large distribution divergences. Thus, we propose the novel general normalized maximum mean discrepancy (GNMMD) feature-learning method to overcome the limitation of unstable conditions. The proposed algorithm can efficiently handle high-dimensional inputs by enforcing three constraints on the matrix of the learned features, and can optimize the objective function-based generalized norm features and MMD. First, this study analyzes the mapping characteristics of the generalized norm. Second, the feature selection approach based on GNMMD is further studied. Third, the current research also discusses the effects of different choices of norm on the diagnosis performance. Lastly, the data sets of the rolling bearing and planetary gear under unstable conditions are used to verify that the proposed method can achieve superior results." @default.
- W3149177145 created "2021-04-13" @default.
- W3149177145 creator A5011132626 @default.
- W3149177145 creator A5027947686 @default.
- W3149177145 creator A5037433861 @default.
- W3149177145 creator A5072115406 @default.
- W3149177145 creator A5080794329 @default.
- W3149177145 date "2021-06-11" @default.
- W3149177145 modified "2023-09-26" @default.
- W3149177145 title "General normalized maximum mean discrepancy: intelligent fault identification method for bearings and gears under unstable conditions" @default.
- W3149177145 cites W2004886822 @default.
- W3149177145 cites W2064474534 @default.
- W3149177145 cites W2111854888 @default.
- W3149177145 cites W2115403315 @default.
- W3149177145 cites W2317595875 @default.
- W3149177145 cites W2423124209 @default.
- W3149177145 cites W2524620548 @default.
- W3149177145 cites W2555910166 @default.
- W3149177145 cites W2588336250 @default.
- W3149177145 cites W2608571722 @default.
- W3149177145 cites W2619304139 @default.
- W3149177145 cites W2750146274 @default.
- W3149177145 cites W2757101026 @default.
- W3149177145 cites W2758113345 @default.
- W3149177145 cites W2768988016 @default.
- W3149177145 cites W2772515592 @default.
- W3149177145 cites W2791786163 @default.
- W3149177145 cites W2810292802 @default.
- W3149177145 cites W2886506350 @default.
- W3149177145 cites W2886755908 @default.
- W3149177145 cites W2898375427 @default.
- W3149177145 cites W2898597600 @default.
- W3149177145 cites W2909717222 @default.
- W3149177145 cites W2914713354 @default.
- W3149177145 cites W2915273349 @default.
- W3149177145 cites W2935987343 @default.
- W3149177145 cites W2939535241 @default.
- W3149177145 cites W2979655715 @default.
- W3149177145 cites W2987480074 @default.
- W3149177145 cites W2994831808 @default.
- W3149177145 cites W2998506103 @default.
- W3149177145 cites W3001242017 @default.
- W3149177145 cites W3005789239 @default.
- W3149177145 cites W3020242267 @default.
- W3149177145 cites W3041173183 @default.
- W3149177145 cites W3045070619 @default.
- W3149177145 cites W3045857695 @default.
- W3149177145 cites W4240046814 @default.
- W3149177145 doi "https://doi.org/10.1088/1361-6501/abf3fb" @default.
- W3149177145 hasPublicationYear "2021" @default.
- W3149177145 type Work @default.
- W3149177145 sameAs 3149177145 @default.
- W3149177145 citedByCount "4" @default.
- W3149177145 countsByYear W31491771452021 @default.
- W3149177145 countsByYear W31491771452022 @default.
- W3149177145 countsByYear W31491771452023 @default.
- W3149177145 crossrefType "journal-article" @default.
- W3149177145 hasAuthorship W3149177145A5011132626 @default.
- W3149177145 hasAuthorship W3149177145A5027947686 @default.
- W3149177145 hasAuthorship W3149177145A5037433861 @default.
- W3149177145 hasAuthorship W3149177145A5072115406 @default.
- W3149177145 hasAuthorship W3149177145A5080794329 @default.
- W3149177145 hasConcept C112972136 @default.
- W3149177145 hasConcept C11413529 @default.
- W3149177145 hasConcept C119857082 @default.
- W3149177145 hasConcept C121332964 @default.
- W3149177145 hasConcept C127313418 @default.
- W3149177145 hasConcept C148483581 @default.
- W3149177145 hasConcept C153180895 @default.
- W3149177145 hasConcept C154945302 @default.
- W3149177145 hasConcept C158693339 @default.
- W3149177145 hasConcept C165205528 @default.
- W3149177145 hasConcept C175551986 @default.
- W3149177145 hasConcept C17744445 @default.
- W3149177145 hasConcept C191795146 @default.
- W3149177145 hasConcept C199539241 @default.
- W3149177145 hasConcept C41008148 @default.
- W3149177145 hasConcept C62520636 @default.
- W3149177145 hasConcept C92207270 @default.
- W3149177145 hasConceptScore W3149177145C112972136 @default.
- W3149177145 hasConceptScore W3149177145C11413529 @default.
- W3149177145 hasConceptScore W3149177145C119857082 @default.
- W3149177145 hasConceptScore W3149177145C121332964 @default.
- W3149177145 hasConceptScore W3149177145C127313418 @default.
- W3149177145 hasConceptScore W3149177145C148483581 @default.
- W3149177145 hasConceptScore W3149177145C153180895 @default.
- W3149177145 hasConceptScore W3149177145C154945302 @default.
- W3149177145 hasConceptScore W3149177145C158693339 @default.
- W3149177145 hasConceptScore W3149177145C165205528 @default.
- W3149177145 hasConceptScore W3149177145C175551986 @default.
- W3149177145 hasConceptScore W3149177145C17744445 @default.
- W3149177145 hasConceptScore W3149177145C191795146 @default.
- W3149177145 hasConceptScore W3149177145C199539241 @default.
- W3149177145 hasConceptScore W3149177145C41008148 @default.
- W3149177145 hasConceptScore W3149177145C62520636 @default.
- W3149177145 hasConceptScore W3149177145C92207270 @default.
- W3149177145 hasFunder F4320321001 @default.
- W3149177145 hasFunder F4320321543 @default.