Matches in SemOpenAlex for { <https://semopenalex.org/work/W3149196402> ?p ?o ?g. }
- W3149196402 endingPage "1215" @default.
- W3149196402 startingPage "1204" @default.
- W3149196402 abstract "Sliced inverse regression (SIR) is the most widely used sufficient dimension reduction method due to its simplicity, generality and computational efficiency. However, when the distribution of covariates deviates from multivariate normal distribution, the estimation efficiency of SIR gets rather low, and the SIR estimator may be inconsistent and misleading, especially in the high-dimensional setting. In this article, we propose a robust alternative to SIR—called elliptical sliced inverse regression (ESIR), to analysis high-dimensional, elliptically distributed data. There are wide applications of elliptically distributed data, especially in finance and economics where the distribution of the data is often heavy-tailed. To tackle the heavy-tailed elliptically distributed covariates, we novelly use the multivariate Kendall’s tau matrix in a framework of generalized eigenvalue problem in sufficient dimension reduction. Methodologically, we present a practical algorithm for our method. Theoretically, we investigate the asymptotic behavior of the ESIR estimator under the high-dimensional setting. Extensive simulation results show ESIR significantly improves the estimation efficiency in heavy-tailed scenarios, compared with other robust SIR methods. Analysis of the Istanbul stock exchange dataset also demonstrates the effectiveness of our proposed method. Moreover, ESIR can be easily extended to other sufficient dimension reduction methods and applied to nonelliptical heavy-tailed distributions." @default.
- W3149196402 created "2021-04-13" @default.
- W3149196402 creator A5027240571 @default.
- W3149196402 creator A5064478020 @default.
- W3149196402 creator A5084671255 @default.
- W3149196402 date "2021-05-04" @default.
- W3149196402 modified "2023-10-16" @default.
- W3149196402 title "High-Dimensional Elliptical Sliced Inverse Regression in Non-Gaussian Distributions" @default.
- W3149196402 cites W1603452536 @default.
- W3149196402 cites W1939766099 @default.
- W3149196402 cites W1965312352 @default.
- W3149196402 cites W1970377488 @default.
- W3149196402 cites W1970916707 @default.
- W3149196402 cites W1977085253 @default.
- W3149196402 cites W1982215369 @default.
- W3149196402 cites W1994483429 @default.
- W3149196402 cites W1998660026 @default.
- W3149196402 cites W1999663487 @default.
- W3149196402 cites W2006661834 @default.
- W3149196402 cites W2012309718 @default.
- W3149196402 cites W2014279061 @default.
- W3149196402 cites W2029800393 @default.
- W3149196402 cites W2033604686 @default.
- W3149196402 cites W2036876646 @default.
- W3149196402 cites W2046164006 @default.
- W3149196402 cites W2053225089 @default.
- W3149196402 cites W2054044693 @default.
- W3149196402 cites W2060121127 @default.
- W3149196402 cites W2068415701 @default.
- W3149196402 cites W2072320681 @default.
- W3149196402 cites W2076857046 @default.
- W3149196402 cites W2081566336 @default.
- W3149196402 cites W2083446706 @default.
- W3149196402 cites W2086014844 @default.
- W3149196402 cites W2087717467 @default.
- W3149196402 cites W2089893077 @default.
- W3149196402 cites W2090965439 @default.
- W3149196402 cites W2091794125 @default.
- W3149196402 cites W2093701508 @default.
- W3149196402 cites W2095296627 @default.
- W3149196402 cites W2097714737 @default.
- W3149196402 cites W2104313063 @default.
- W3149196402 cites W2144405862 @default.
- W3149196402 cites W2144681067 @default.
- W3149196402 cites W2154080901 @default.
- W3149196402 cites W2154560360 @default.
- W3149196402 cites W2159718141 @default.
- W3149196402 cites W2162942021 @default.
- W3149196402 cites W2163490846 @default.
- W3149196402 cites W2164092415 @default.
- W3149196402 cites W2171050905 @default.
- W3149196402 cites W2176424285 @default.
- W3149196402 cites W2482053526 @default.
- W3149196402 cites W2532784624 @default.
- W3149196402 cites W3098364281 @default.
- W3149196402 cites W3099354022 @default.
- W3149196402 cites W3106209397 @default.
- W3149196402 cites W4213170682 @default.
- W3149196402 cites W4230676649 @default.
- W3149196402 doi "https://doi.org/10.1080/07350015.2021.1910041" @default.
- W3149196402 hasPublicationYear "2021" @default.
- W3149196402 type Work @default.
- W3149196402 sameAs 3149196402 @default.
- W3149196402 citedByCount "2" @default.
- W3149196402 countsByYear W31491964022022 @default.
- W3149196402 countsByYear W31491964022023 @default.
- W3149196402 crossrefType "journal-article" @default.
- W3149196402 hasAuthorship W3149196402A5027240571 @default.
- W3149196402 hasAuthorship W3149196402A5064478020 @default.
- W3149196402 hasAuthorship W3149196402A5084671255 @default.
- W3149196402 hasBestOaLocation W31491964022 @default.
- W3149196402 hasConcept C105795698 @default.
- W3149196402 hasConcept C110121322 @default.
- W3149196402 hasConcept C119043178 @default.
- W3149196402 hasConcept C121332964 @default.
- W3149196402 hasConcept C126255220 @default.
- W3149196402 hasConcept C130545031 @default.
- W3149196402 hasConcept C132878287 @default.
- W3149196402 hasConcept C134306372 @default.
- W3149196402 hasConcept C154945302 @default.
- W3149196402 hasConcept C161584116 @default.
- W3149196402 hasConcept C163716315 @default.
- W3149196402 hasConcept C177384507 @default.
- W3149196402 hasConcept C185429906 @default.
- W3149196402 hasConcept C199163554 @default.
- W3149196402 hasConcept C202444582 @default.
- W3149196402 hasConcept C27931671 @default.
- W3149196402 hasConcept C28826006 @default.
- W3149196402 hasConcept C33676613 @default.
- W3149196402 hasConcept C33923547 @default.
- W3149196402 hasConcept C41008148 @default.
- W3149196402 hasConcept C41341539 @default.
- W3149196402 hasConcept C62520636 @default.
- W3149196402 hasConcept C65778772 @default.
- W3149196402 hasConcept C70518039 @default.
- W3149196402 hasConcept C83546350 @default.
- W3149196402 hasConceptScore W3149196402C105795698 @default.
- W3149196402 hasConceptScore W3149196402C110121322 @default.