Matches in SemOpenAlex for { <https://semopenalex.org/work/W3149281359> ?p ?o ?g. }
- W3149281359 endingPage "5250" @default.
- W3149281359 startingPage "5236" @default.
- W3149281359 abstract "Although the incorporation of nanoparticles into ultrafiltration polymeric membranes has shown promising outcomes, their commercial implementation has yet to be fulfilled due to inconsistency in data, lack of a reliable recipe for the optimum filler content, and reluctance in disrupting the production line which requires significant time and resources. There is a growing demand among membrane communities for a design platform that can accelerate the discovery of new nanocomposite membranes. In this work, a feed-forward ANN (artificial neural network) model that has one hidden layer and the Bayesian regularization training algorithm were chosen for designing a graphical user interface platform to predict the ultrafiltration nanocomposite membrane performance, that is, solute rejection, flux recovery, and pure water flux, thereby saving time and resources used in membrane design. Experimental data (735 samples from 200 reports published between 2006 and 2020) were derived from the literature for training, validation, and testing of the ANN models. The results indicated that the best 30 ANN models produce the most accurate estimation of membrane performance using the seven input variables of polymer concentration, polymer type, filler concentration, average filler size, solvent concentration (in the dope solution), solvent type, and contact angle on the unseen data set. Furthermore, a sensitivity analysis was performed on the achieved models to identify the most effective input variables for each nanocomposite membrane performance. This work has the potential to be extended to other mixed matrix membrane types that are going to be used for microfiltration, nanofiltration, reverse osmosis, and so forth." @default.
- W3149281359 created "2021-04-13" @default.
- W3149281359 creator A5005520667 @default.
- W3149281359 creator A5008884053 @default.
- W3149281359 creator A5025120955 @default.
- W3149281359 creator A5027923393 @default.
- W3149281359 creator A5033868335 @default.
- W3149281359 creator A5047892855 @default.
- W3149281359 creator A5054559721 @default.
- W3149281359 creator A5075484786 @default.
- W3149281359 creator A5085364028 @default.
- W3149281359 date "2021-03-31" @default.
- W3149281359 modified "2023-10-01" @default.
- W3149281359 title "Machine Learning for Advanced Design of Nanocomposite Ultrafiltration Membranes" @default.
- W3149281359 cites W1124532354 @default.
- W3149281359 cites W1970304505 @default.
- W3149281359 cites W1976595146 @default.
- W3149281359 cites W1981797220 @default.
- W3149281359 cites W1992985800 @default.
- W3149281359 cites W1994395436 @default.
- W3149281359 cites W2000475803 @default.
- W3149281359 cites W2003457339 @default.
- W3149281359 cites W2004090944 @default.
- W3149281359 cites W2012507281 @default.
- W3149281359 cites W2013407688 @default.
- W3149281359 cites W2013827244 @default.
- W3149281359 cites W2025718405 @default.
- W3149281359 cites W2025815853 @default.
- W3149281359 cites W2029771481 @default.
- W3149281359 cites W2058265854 @default.
- W3149281359 cites W2065398165 @default.
- W3149281359 cites W2065905435 @default.
- W3149281359 cites W2067603306 @default.
- W3149281359 cites W2073001825 @default.
- W3149281359 cites W2083188436 @default.
- W3149281359 cites W2088593093 @default.
- W3149281359 cites W2090538517 @default.
- W3149281359 cites W2112845989 @default.
- W3149281359 cites W2123442751 @default.
- W3149281359 cites W2134164499 @default.
- W3149281359 cites W2175143722 @default.
- W3149281359 cites W2178019487 @default.
- W3149281359 cites W2253921858 @default.
- W3149281359 cites W2278970271 @default.
- W3149281359 cites W2319902168 @default.
- W3149281359 cites W2326966825 @default.
- W3149281359 cites W2342188233 @default.
- W3149281359 cites W2397349486 @default.
- W3149281359 cites W2464599881 @default.
- W3149281359 cites W2467249088 @default.
- W3149281359 cites W2484986806 @default.
- W3149281359 cites W2534912827 @default.
- W3149281359 cites W2567706609 @default.
- W3149281359 cites W2623469371 @default.
- W3149281359 cites W2742835787 @default.
- W3149281359 cites W2793344462 @default.
- W3149281359 cites W2795755959 @default.
- W3149281359 cites W2896641631 @default.
- W3149281359 cites W2921358543 @default.
- W3149281359 cites W2923266918 @default.
- W3149281359 cites W2940466257 @default.
- W3149281359 cites W2946703032 @default.
- W3149281359 cites W2949962474 @default.
- W3149281359 cites W2962749109 @default.
- W3149281359 cites W2966652983 @default.
- W3149281359 cites W2968378565 @default.
- W3149281359 cites W2971206777 @default.
- W3149281359 cites W2986665002 @default.
- W3149281359 cites W2986942645 @default.
- W3149281359 cites W2987296232 @default.
- W3149281359 cites W2999511825 @default.
- W3149281359 cites W3003769243 @default.
- W3149281359 cites W3015364947 @default.
- W3149281359 cites W3021730824 @default.
- W3149281359 cites W3024556032 @default.
- W3149281359 cites W3035880251 @default.
- W3149281359 cites W3045182462 @default.
- W3149281359 cites W3096519810 @default.
- W3149281359 cites W3129173798 @default.
- W3149281359 cites W37018364 @default.
- W3149281359 doi "https://doi.org/10.1021/acs.iecr.0c05446" @default.
- W3149281359 hasPublicationYear "2021" @default.
- W3149281359 type Work @default.
- W3149281359 sameAs 3149281359 @default.
- W3149281359 citedByCount "27" @default.
- W3149281359 countsByYear W31492813592021 @default.
- W3149281359 countsByYear W31492813592022 @default.
- W3149281359 countsByYear W31492813592023 @default.
- W3149281359 crossrefType "journal-article" @default.
- W3149281359 hasAuthorship W3149281359A5005520667 @default.
- W3149281359 hasAuthorship W3149281359A5008884053 @default.
- W3149281359 hasAuthorship W3149281359A5025120955 @default.
- W3149281359 hasAuthorship W3149281359A5027923393 @default.
- W3149281359 hasAuthorship W3149281359A5033868335 @default.
- W3149281359 hasAuthorship W3149281359A5047892855 @default.
- W3149281359 hasAuthorship W3149281359A5054559721 @default.
- W3149281359 hasAuthorship W3149281359A5075484786 @default.
- W3149281359 hasAuthorship W3149281359A5085364028 @default.