Matches in SemOpenAlex for { <https://semopenalex.org/work/W3149294210> ?p ?o ?g. }
- W3149294210 endingPage "8465" @default.
- W3149294210 startingPage "8451" @default.
- W3149294210 abstract "Knowledge in the source domain can be used in transfer learning to help train and classification tasks within the target domain with fewer available data sets. Therefore, given the situation where the target domain contains only a small number of available unlabeled data sets and multi-source domains contain a large number of labeled data sets, a new Multi-source Fast Transfer Learning algorithm based on support vector machine(MultiFTLSVM) is proposed in this paper. Given the idea of multi-source transfer learning, more source domain knowledge is taken to train the target domain learning task to improve classification effect. At the same time, the representative data set of the source domain is taken to speed up the algorithm training process to improve the efficiency of the algorithm. Experimental results on several real data sets show the effectiveness of MultiFTLSVM, and it also has certain advantages compared with the benchmark algorithm." @default.
- W3149294210 created "2021-04-13" @default.
- W3149294210 creator A5000318376 @default.
- W3149294210 creator A5018786162 @default.
- W3149294210 creator A5028902175 @default.
- W3149294210 date "2021-04-06" @default.
- W3149294210 modified "2023-09-28" @default.
- W3149294210 title "Multi-source fast transfer learning algorithm based on support vector machine" @default.
- W3149294210 cites W1901616594 @default.
- W3149294210 cites W1981658663 @default.
- W3149294210 cites W2012231141 @default.
- W3149294210 cites W2050089427 @default.
- W3149294210 cites W2062179223 @default.
- W3149294210 cites W2075728230 @default.
- W3149294210 cites W2093778562 @default.
- W3149294210 cites W2100038104 @default.
- W3149294210 cites W2100664256 @default.
- W3149294210 cites W2115403315 @default.
- W3149294210 cites W2153635508 @default.
- W3149294210 cites W2155251704 @default.
- W3149294210 cites W2165698076 @default.
- W3149294210 cites W2212983101 @default.
- W3149294210 cites W2293352836 @default.
- W3149294210 cites W2395579298 @default.
- W3149294210 cites W2418112915 @default.
- W3149294210 cites W2520176975 @default.
- W3149294210 cites W2542013034 @default.
- W3149294210 cites W2551868040 @default.
- W3149294210 cites W2576964996 @default.
- W3149294210 cites W2729632970 @default.
- W3149294210 cites W2753309193 @default.
- W3149294210 cites W2758375579 @default.
- W3149294210 cites W2767756420 @default.
- W3149294210 cites W2776320162 @default.
- W3149294210 cites W2794284562 @default.
- W3149294210 cites W2890217313 @default.
- W3149294210 cites W2909182718 @default.
- W3149294210 cites W2910096450 @default.
- W3149294210 cites W2964744810 @default.
- W3149294210 cites W2973177780 @default.
- W3149294210 cites W2980630789 @default.
- W3149294210 cites W3005698566 @default.
- W3149294210 cites W3014615346 @default.
- W3149294210 cites W3025853597 @default.
- W3149294210 cites W3028834351 @default.
- W3149294210 cites W3091787675 @default.
- W3149294210 doi "https://doi.org/10.1007/s10489-021-02194-9" @default.
- W3149294210 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8023540" @default.
- W3149294210 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34764591" @default.
- W3149294210 hasPublicationYear "2021" @default.
- W3149294210 type Work @default.
- W3149294210 sameAs 3149294210 @default.
- W3149294210 citedByCount "9" @default.
- W3149294210 countsByYear W31492942102022 @default.
- W3149294210 countsByYear W31492942102023 @default.
- W3149294210 crossrefType "journal-article" @default.
- W3149294210 hasAuthorship W3149294210A5000318376 @default.
- W3149294210 hasAuthorship W3149294210A5018786162 @default.
- W3149294210 hasAuthorship W3149294210A5028902175 @default.
- W3149294210 hasBestOaLocation W31492942101 @default.
- W3149294210 hasConcept C111919701 @default.
- W3149294210 hasConcept C11413529 @default.
- W3149294210 hasConcept C119857082 @default.
- W3149294210 hasConcept C12267149 @default.
- W3149294210 hasConcept C124101348 @default.
- W3149294210 hasConcept C13280743 @default.
- W3149294210 hasConcept C134306372 @default.
- W3149294210 hasConcept C150899416 @default.
- W3149294210 hasConcept C154945302 @default.
- W3149294210 hasConcept C162324750 @default.
- W3149294210 hasConcept C173608175 @default.
- W3149294210 hasConcept C177264268 @default.
- W3149294210 hasConcept C185798385 @default.
- W3149294210 hasConcept C187736073 @default.
- W3149294210 hasConcept C199360897 @default.
- W3149294210 hasConcept C205649164 @default.
- W3149294210 hasConcept C2776145971 @default.
- W3149294210 hasConcept C2776175482 @default.
- W3149294210 hasConcept C2780451532 @default.
- W3149294210 hasConcept C33923547 @default.
- W3149294210 hasConcept C36503486 @default.
- W3149294210 hasConcept C41008148 @default.
- W3149294210 hasConcept C58489278 @default.
- W3149294210 hasConcept C98045186 @default.
- W3149294210 hasConceptScore W3149294210C111919701 @default.
- W3149294210 hasConceptScore W3149294210C11413529 @default.
- W3149294210 hasConceptScore W3149294210C119857082 @default.
- W3149294210 hasConceptScore W3149294210C12267149 @default.
- W3149294210 hasConceptScore W3149294210C124101348 @default.
- W3149294210 hasConceptScore W3149294210C13280743 @default.
- W3149294210 hasConceptScore W3149294210C134306372 @default.
- W3149294210 hasConceptScore W3149294210C150899416 @default.
- W3149294210 hasConceptScore W3149294210C154945302 @default.
- W3149294210 hasConceptScore W3149294210C162324750 @default.
- W3149294210 hasConceptScore W3149294210C173608175 @default.
- W3149294210 hasConceptScore W3149294210C177264268 @default.
- W3149294210 hasConceptScore W3149294210C185798385 @default.
- W3149294210 hasConceptScore W3149294210C187736073 @default.