Matches in SemOpenAlex for { <https://semopenalex.org/work/W3149345037> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3149345037 abstract "We present a dynamical model for a population of tests in pattern recognition. Taking a preprocessed initialization of a feature set, we apply a stochastic algorithm based on an efficiency criterion and a Gaussian noise to recursively build and improve the feature space. This algorithm simulates a Markov chain which estimates a probability distribution P on the set of features. The features are structured as binary trees and we show that such random forests are a good way to represent the evolution of the feature set. We then obtain properties on the dynamic of the features space before applying this algorithm to practical examples such as face detection and microarray analysis. Lastly, we identify the weak limit of our process as a jump-diffusion process defined using the Skorokhod map over simplices. 1. Introduction. In this paper, we study a learning algorithm designed for the construction of features in pattern recognition tasks. This algorithm is constructed as the stochastic approximation of a constrained jump-diffusion process, for which we provide an asymptotic analysis. The algorithm originates from the following issue. A pattern recognition problem corresponds to the classification of input data into two or more classes. To solve this, an algorithm, called a classifier, is used to design a function which associates a class prediction to an observation of the input variables. There exists several types of competing approaches for building classifiers. Our goal is not to build a new one, but to optimize and improve the prediction by feeding the algorithm with the best input variables. Poorly informative variables indeed act like noise in a dataset and reduce the quality of learning algorithms, and fewer variables generally is a guarantee for robustness and reduced generalization ability. Also, a good understanding of the features which have more impact in the classification is critical in some subjects such as biology or text categorization: In microarray analysis, for example, it is important to identify the genes which express a pathology, and in spam detection, one can expect that the presence of some special chain of words enables better detection of nondesirable spam for some classical algorithms such as support vector machines (SVMs), classification trees (CART), or random forests, for instance. Denote by F0 the initial set of variables; in the machine learning community, these are also called features and this is the word we will use in this paper. In several recent interesting applications, F0 is a large set, which contains hundreds, maybe thousands, of elements. Given that what we want to consider are not only a few useful elements of F0, but also useful combinations of them, we face an overwhelming space of possible explanatory variables that we need to explore in the selection process. Our goal will" @default.
- W3149345037 created "2021-04-13" @default.
- W3149345037 creator A5035980841 @default.
- W3149345037 date "2008-01-01" @default.
- W3149345037 modified "2023-09-27" @default.
- W3149345037 title "JUMP DIFFUSION OVER FEATURE SPACE FOR OBJECT RECOGNITION" @default.
- W3149345037 cites W1484011201 @default.
- W3149345037 cites W1484267881 @default.
- W3149345037 cites W1499021337 @default.
- W3149345037 cites W1508280906 @default.
- W3149345037 cites W1588228676 @default.
- W3149345037 cites W1601741105 @default.
- W3149345037 cites W1996355918 @default.
- W3149345037 cites W2007615926 @default.
- W3149345037 cites W2009349041 @default.
- W3149345037 cites W2019125032 @default.
- W3149345037 cites W2032836743 @default.
- W3149345037 cites W2041459929 @default.
- W3149345037 cites W2062908542 @default.
- W3149345037 cites W2097839764 @default.
- W3149345037 cites W2106596127 @default.
- W3149345037 cites W2109363337 @default.
- W3149345037 cites W2110298216 @default.
- W3149345037 cites W2117662942 @default.
- W3149345037 cites W2120240539 @default.
- W3149345037 cites W2124722975 @default.
- W3149345037 cites W2146653490 @default.
- W3149345037 cites W2149454242 @default.
- W3149345037 cites W2158001550 @default.
- W3149345037 cites W2735648619 @default.
- W3149345037 cites W2802739963 @default.
- W3149345037 hasPublicationYear "2008" @default.
- W3149345037 type Work @default.
- W3149345037 sameAs 3149345037 @default.
- W3149345037 citedByCount "0" @default.
- W3149345037 crossrefType "journal-article" @default.
- W3149345037 hasAuthorship W3149345037A5035980841 @default.
- W3149345037 hasConcept C11413529 @default.
- W3149345037 hasConcept C114466953 @default.
- W3149345037 hasConcept C138885662 @default.
- W3149345037 hasConcept C144024400 @default.
- W3149345037 hasConcept C149923435 @default.
- W3149345037 hasConcept C153180895 @default.
- W3149345037 hasConcept C154945302 @default.
- W3149345037 hasConcept C199360897 @default.
- W3149345037 hasConcept C23224414 @default.
- W3149345037 hasConcept C2776401178 @default.
- W3149345037 hasConcept C2908647359 @default.
- W3149345037 hasConcept C33923547 @default.
- W3149345037 hasConcept C41008148 @default.
- W3149345037 hasConcept C41895202 @default.
- W3149345037 hasConcept C83665646 @default.
- W3149345037 hasConceptScore W3149345037C11413529 @default.
- W3149345037 hasConceptScore W3149345037C114466953 @default.
- W3149345037 hasConceptScore W3149345037C138885662 @default.
- W3149345037 hasConceptScore W3149345037C144024400 @default.
- W3149345037 hasConceptScore W3149345037C149923435 @default.
- W3149345037 hasConceptScore W3149345037C153180895 @default.
- W3149345037 hasConceptScore W3149345037C154945302 @default.
- W3149345037 hasConceptScore W3149345037C199360897 @default.
- W3149345037 hasConceptScore W3149345037C23224414 @default.
- W3149345037 hasConceptScore W3149345037C2776401178 @default.
- W3149345037 hasConceptScore W3149345037C2908647359 @default.
- W3149345037 hasConceptScore W3149345037C33923547 @default.
- W3149345037 hasConceptScore W3149345037C41008148 @default.
- W3149345037 hasConceptScore W3149345037C41895202 @default.
- W3149345037 hasConceptScore W3149345037C83665646 @default.
- W3149345037 hasLocation W31493450371 @default.
- W3149345037 hasOpenAccess W3149345037 @default.
- W3149345037 hasPrimaryLocation W31493450371 @default.
- W3149345037 hasRelatedWork W1975777241 @default.
- W3149345037 hasRelatedWork W2029305120 @default.
- W3149345037 hasRelatedWork W2067078155 @default.
- W3149345037 hasRelatedWork W2105644991 @default.
- W3149345037 hasRelatedWork W2151009493 @default.
- W3149345037 hasRelatedWork W2188597853 @default.
- W3149345037 hasRelatedWork W2275114322 @default.
- W3149345037 hasRelatedWork W2299623326 @default.
- W3149345037 hasRelatedWork W2346416401 @default.
- W3149345037 hasRelatedWork W2514120850 @default.
- W3149345037 hasRelatedWork W2593236586 @default.
- W3149345037 hasRelatedWork W2594608700 @default.
- W3149345037 hasRelatedWork W2890482341 @default.
- W3149345037 hasRelatedWork W2962683745 @default.
- W3149345037 hasRelatedWork W2987205337 @default.
- W3149345037 hasRelatedWork W3000308450 @default.
- W3149345037 hasRelatedWork W3035081753 @default.
- W3149345037 hasRelatedWork W3040702306 @default.
- W3149345037 hasRelatedWork W3084191581 @default.
- W3149345037 hasRelatedWork W203171751 @default.
- W3149345037 isParatext "false" @default.
- W3149345037 isRetracted "false" @default.
- W3149345037 magId "3149345037" @default.
- W3149345037 workType "article" @default.