Matches in SemOpenAlex for { <https://semopenalex.org/work/W3149644388> ?p ?o ?g. }
- W3149644388 endingPage "5437" @default.
- W3149644388 startingPage "5425" @default.
- W3149644388 abstract "In recent years, the use of deep learning (neural network) potential energy surface (NNPES) in molecular dynamics simulation has experienced explosive growth as it can be as accurate as quantum chemistry methods while being as efficient as classical mechanic methods. However, the development of NNPES is highly nontrivial. In particular, it has been troubling to construct a dataset that is as small as possible yet can cover the target chemical space. In this work, an ESOINN-DP method is developed, which has the enhanced self-organizing incremental neural network (ESOINN) and a newly proposed error indicator at its core. With ESOINN-DP, one can construct the NNPES with little human intervention, and this method ensures that the constructed reference dataset covers the target chemical space with minimum redundancy. The performance of the ESOINN-DP method has been well validated by developing neural network potential energy surfaces for water clusters, tripeptides, and by de-redundancy of a sub-dataset of the ANI-1 database. We believe that the ESOINN-DP method provides a novel idea for the construction of NNPES and, especially, the reference datasets, and it can be used for molecular dynamics (MD) simulations of various gas-phase and condensed-phase chemical systems." @default.
- W3149644388 created "2021-04-13" @default.
- W3149644388 creator A5016050256 @default.
- W3149644388 creator A5030251392 @default.
- W3149644388 date "2021-11-09" @default.
- W3149644388 modified "2023-10-08" @default.
- W3149644388 title "Automated Construction of Neural Network Potential Energy Surface: The Enhanced Self-Organizing Incremental Neural Network Deep Potential Method" @default.
- W3149644388 cites W1975415270 @default.
- W3149644388 cites W1975997599 @default.
- W3149644388 cites W1994732149 @default.
- W3149644388 cites W1998260904 @default.
- W3149644388 cites W2012121165 @default.
- W3149644388 cites W2025444507 @default.
- W3149644388 cites W2030280844 @default.
- W3149644388 cites W2040331761 @default.
- W3149644388 cites W2055526416 @default.
- W3149644388 cites W2057858097 @default.
- W3149644388 cites W2058370262 @default.
- W3149644388 cites W2061179540 @default.
- W3149644388 cites W2063186472 @default.
- W3149644388 cites W2063739545 @default.
- W3149644388 cites W2083415705 @default.
- W3149644388 cites W2085753477 @default.
- W3149644388 cites W2092077040 @default.
- W3149644388 cites W2104489082 @default.
- W3149644388 cites W2115462899 @default.
- W3149644388 cites W2127737131 @default.
- W3149644388 cites W2130370504 @default.
- W3149644388 cites W2150159007 @default.
- W3149644388 cites W2527189750 @default.
- W3149644388 cites W2530960271 @default.
- W3149644388 cites W2541404351 @default.
- W3149644388 cites W2547447472 @default.
- W3149644388 cites W2552981463 @default.
- W3149644388 cites W2563751252 @default.
- W3149644388 cites W2585152223 @default.
- W3149644388 cites W2742127985 @default.
- W3149644388 cites W2746244909 @default.
- W3149644388 cites W2749006386 @default.
- W3149644388 cites W2768213699 @default.
- W3149644388 cites W2785813126 @default.
- W3149644388 cites W2786791309 @default.
- W3149644388 cites W2803689744 @default.
- W3149644388 cites W2806393871 @default.
- W3149644388 cites W2807640093 @default.
- W3149644388 cites W2898452306 @default.
- W3149644388 cites W2904853711 @default.
- W3149644388 cites W2906668135 @default.
- W3149644388 cites W2937878568 @default.
- W3149644388 cites W2939169979 @default.
- W3149644388 cites W2943626891 @default.
- W3149644388 cites W2949223833 @default.
- W3149644388 cites W2950674591 @default.
- W3149644388 cites W2951845929 @default.
- W3149644388 cites W2968558338 @default.
- W3149644388 cites W2985776732 @default.
- W3149644388 cites W2991533556 @default.
- W3149644388 cites W3005951937 @default.
- W3149644388 cites W3006005697 @default.
- W3149644388 cites W3022062150 @default.
- W3149644388 cites W3030664746 @default.
- W3149644388 cites W3033461492 @default.
- W3149644388 cites W3036490780 @default.
- W3149644388 cites W3085090411 @default.
- W3149644388 cites W3086372695 @default.
- W3149644388 cites W3090555547 @default.
- W3149644388 cites W3091546561 @default.
- W3149644388 cites W3098341684 @default.
- W3149644388 cites W3098509317 @default.
- W3149644388 cites W3100571530 @default.
- W3149644388 cites W3100603243 @default.
- W3149644388 cites W3102448310 @default.
- W3149644388 cites W3103344715 @default.
- W3149644388 cites W3104585744 @default.
- W3149644388 cites W3119329252 @default.
- W3149644388 cites W3158781419 @default.
- W3149644388 cites W3173107846 @default.
- W3149644388 doi "https://doi.org/10.1021/acs.jcim.1c01125" @default.
- W3149644388 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34752095" @default.
- W3149644388 hasPublicationYear "2021" @default.
- W3149644388 type Work @default.
- W3149644388 sameAs 3149644388 @default.
- W3149644388 citedByCount "5" @default.
- W3149644388 countsByYear W31496443882022 @default.
- W3149644388 countsByYear W31496443882023 @default.
- W3149644388 crossrefType "journal-article" @default.
- W3149644388 hasAuthorship W3149644388A5016050256 @default.
- W3149644388 hasAuthorship W3149644388A5030251392 @default.
- W3149644388 hasConcept C111919701 @default.
- W3149644388 hasConcept C119857082 @default.
- W3149644388 hasConcept C124101348 @default.
- W3149644388 hasConcept C152124472 @default.
- W3149644388 hasConcept C154945302 @default.
- W3149644388 hasConcept C185592680 @default.
- W3149644388 hasConcept C199360897 @default.
- W3149644388 hasConcept C2780801425 @default.
- W3149644388 hasConcept C41008148 @default.
- W3149644388 hasConcept C50644808 @default.