Matches in SemOpenAlex for { <https://semopenalex.org/work/W3149658912> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3149658912 abstract "In recent years, the use of machine learning-based surrogate models for computational fluid dynamics (CFD) simulations has emerged as a promising technique for reducing the computational cost associated with engine design optimization. However, such methods still suffer from drawbacks. One main disadvantage of is that the default machine learning (ML) hyperparameters are often severely suboptimal for a given problem. This has often been addressed by manually trying out different hyperparameter settings, but this solution is ineffective in a high-dimensional hyperparameter space. Besides this problem, the amount of data needed for training is also not known a priori. In response to these issues that need to be addressed, the present work describes and validates an automated active learning approach, AutoML-GA, for surrogate-based optimization of internal combustion engines. In this approach, a Bayesian optimization technique is used to find the best machine learning hyperparameters based on an initial dataset obtained from a small number of CFD simulations. Subsequently, a genetic algorithm is employed to locate the design optimum on the ML surrogate surface. In the vicinity of the design optimum, the solution is refined by repeatedly running CFD simulations at the projected optimum and adding the newly obtained data to the training dataset. It is demonstrated that AutoML-GA leads to a better optimum with a lower number of CFD simulations, compared to the use of default hyperparameters. The proposed framework offers the advantage of being a more hands-off approach that can be readily utilized by researchers and engineers in industry who do not have extensive machine learning expertise." @default.
- W3149658912 created "2021-04-13" @default.
- W3149658912 creator A5017782131 @default.
- W3149658912 creator A5018396603 @default.
- W3149658912 creator A5037919862 @default.
- W3149658912 creator A5046410250 @default.
- W3149658912 creator A5071693665 @default.
- W3149658912 creator A5056452240 @default.
- W3149658912 creator A5059798180 @default.
- W3149658912 date "2021-01-07" @default.
- W3149658912 modified "2023-09-25" @default.
- W3149658912 title "Application of an automated machine learning-genetic algorithm (AutoML-GA) coupled with computational fluid dynamics simulations for rapid engine design optimization" @default.
- W3149658912 cites W1522513635 @default.
- W3149658912 cites W1976833865 @default.
- W3149658912 cites W1979328769 @default.
- W3149658912 cites W2027874434 @default.
- W3149658912 cites W2031874479 @default.
- W3149658912 cites W2101234009 @default.
- W3149658912 cites W2324986918 @default.
- W3149658912 cites W2591002541 @default.
- W3149658912 cites W2747321226 @default.
- W3149658912 cites W2795778498 @default.
- W3149658912 cites W2795990911 @default.
- W3149658912 cites W2802442158 @default.
- W3149658912 cites W2899322822 @default.
- W3149658912 cites W2899952556 @default.
- W3149658912 cites W2934868860 @default.
- W3149658912 cites W2990990121 @default.
- W3149658912 cites W3011697175 @default.
- W3149658912 cites W3110511296 @default.
- W3149658912 cites W3121020753 @default.
- W3149658912 cites W3136168831 @default.
- W3149658912 cites W3210311544 @default.
- W3149658912 hasPublicationYear "2021" @default.
- W3149658912 type Work @default.
- W3149658912 sameAs 3149658912 @default.
- W3149658912 citedByCount "0" @default.
- W3149658912 crossrefType "posted-content" @default.
- W3149658912 hasAuthorship W3149658912A5017782131 @default.
- W3149658912 hasAuthorship W3149658912A5018396603 @default.
- W3149658912 hasAuthorship W3149658912A5037919862 @default.
- W3149658912 hasAuthorship W3149658912A5046410250 @default.
- W3149658912 hasAuthorship W3149658912A5056452240 @default.
- W3149658912 hasAuthorship W3149658912A5059798180 @default.
- W3149658912 hasAuthorship W3149658912A5071693665 @default.
- W3149658912 hasConcept C111472728 @default.
- W3149658912 hasConcept C11413529 @default.
- W3149658912 hasConcept C119857082 @default.
- W3149658912 hasConcept C127413603 @default.
- W3149658912 hasConcept C131675550 @default.
- W3149658912 hasConcept C138885662 @default.
- W3149658912 hasConcept C146978453 @default.
- W3149658912 hasConcept C154945302 @default.
- W3149658912 hasConcept C1633027 @default.
- W3149658912 hasConcept C2778049539 @default.
- W3149658912 hasConcept C41008148 @default.
- W3149658912 hasConcept C75553542 @default.
- W3149658912 hasConcept C8642999 @default.
- W3149658912 hasConcept C8880873 @default.
- W3149658912 hasConceptScore W3149658912C111472728 @default.
- W3149658912 hasConceptScore W3149658912C11413529 @default.
- W3149658912 hasConceptScore W3149658912C119857082 @default.
- W3149658912 hasConceptScore W3149658912C127413603 @default.
- W3149658912 hasConceptScore W3149658912C131675550 @default.
- W3149658912 hasConceptScore W3149658912C138885662 @default.
- W3149658912 hasConceptScore W3149658912C146978453 @default.
- W3149658912 hasConceptScore W3149658912C154945302 @default.
- W3149658912 hasConceptScore W3149658912C1633027 @default.
- W3149658912 hasConceptScore W3149658912C2778049539 @default.
- W3149658912 hasConceptScore W3149658912C41008148 @default.
- W3149658912 hasConceptScore W3149658912C75553542 @default.
- W3149658912 hasConceptScore W3149658912C8642999 @default.
- W3149658912 hasConceptScore W3149658912C8880873 @default.
- W3149658912 hasLocation W31496589121 @default.
- W3149658912 hasOpenAccess W3149658912 @default.
- W3149658912 hasPrimaryLocation W31496589121 @default.
- W3149658912 hasRelatedWork W1499017674 @default.
- W3149658912 hasRelatedWork W2036442044 @default.
- W3149658912 hasRelatedWork W2048087296 @default.
- W3149658912 hasRelatedWork W2070745108 @default.
- W3149658912 hasRelatedWork W2293168543 @default.
- W3149658912 hasRelatedWork W2334613228 @default.
- W3149658912 hasRelatedWork W2502652794 @default.
- W3149658912 hasRelatedWork W2558082769 @default.
- W3149658912 hasRelatedWork W2603581473 @default.
- W3149658912 hasRelatedWork W2612674377 @default.
- W3149658912 hasRelatedWork W2620920129 @default.
- W3149658912 hasRelatedWork W2778434711 @default.
- W3149658912 hasRelatedWork W2796139399 @default.
- W3149658912 hasRelatedWork W2798650501 @default.
- W3149658912 hasRelatedWork W2920939212 @default.
- W3149658912 hasRelatedWork W2952576188 @default.
- W3149658912 hasRelatedWork W2998297871 @default.
- W3149658912 hasRelatedWork W3124489140 @default.
- W3149658912 hasRelatedWork W3127337844 @default.
- W3149658912 hasRelatedWork W98079188 @default.
- W3149658912 isParatext "false" @default.
- W3149658912 isRetracted "false" @default.
- W3149658912 magId "3149658912" @default.
- W3149658912 workType "article" @default.