Matches in SemOpenAlex for { <https://semopenalex.org/work/W3149698721> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3149698721 endingPage "1706" @default.
- W3149698721 startingPage "1701" @default.
- W3149698721 abstract "In this letter, we propose a general digital image operation anti-forensic framework based on generative adversarial nets (GANs), called dual-domain generative adversarial network (DDGAN). To tackle the issue of image operation detection, the proposed framework incorporates both operation specific forensic features and machine-learned knowledge to ensure that the generated images exhibit better undetectability performance against various detectors. The DDGAN consists of a generator and two discriminators working on different domains, i.e., the operation-specific feature domain which helps to conceal the artifacts from the perspective of forensic analysis for the target task, and the spatial domain which facilitates to take advantage of machine-learned features from the scratch as a supplementary. Through the experiments on median filtering and JPEG compression anti-forensics, we show the superior performance of the proposed DDGAN compared with state-of-the-art anti-forensic methods in terms of undetectability and visual quality." @default.
- W3149698721 created "2021-04-13" @default.
- W3149698721 creator A5039213686 @default.
- W3149698721 creator A5059577640 @default.
- W3149698721 creator A5062980212 @default.
- W3149698721 date "2022-03-01" @default.
- W3149698721 modified "2023-10-14" @default.
- W3149698721 title "Dual-Domain Generative Adversarial Network for Digital Image Operation Anti-Forensics" @default.
- W3149698721 cites W1972263025 @default.
- W3149698721 cites W1973629749 @default.
- W3149698721 cites W1980745118 @default.
- W3149698721 cites W1985613413 @default.
- W3149698721 cites W2009130368 @default.
- W3149698721 cites W2016865335 @default.
- W3149698721 cites W2030623417 @default.
- W3149698721 cites W2037974317 @default.
- W3149698721 cites W2044669911 @default.
- W3149698721 cites W2048265462 @default.
- W3149698721 cites W2106663508 @default.
- W3149698721 cites W2123965969 @default.
- W3149698721 cites W2160921722 @default.
- W3149698721 cites W2242218935 @default.
- W3149698721 cites W2342499077 @default.
- W3149698721 cites W2412509443 @default.
- W3149698721 cites W2514123796 @default.
- W3149698721 cites W2774322245 @default.
- W3149698721 cites W2809146085 @default.
- W3149698721 cites W2893230499 @default.
- W3149698721 cites W2902302451 @default.
- W3149698721 cites W2911098213 @default.
- W3149698721 doi "https://doi.org/10.1109/tcsvt.2021.3068294" @default.
- W3149698721 hasPublicationYear "2022" @default.
- W3149698721 type Work @default.
- W3149698721 sameAs 3149698721 @default.
- W3149698721 citedByCount "5" @default.
- W3149698721 countsByYear W31496987212022 @default.
- W3149698721 countsByYear W31496987212023 @default.
- W3149698721 crossrefType "journal-article" @default.
- W3149698721 hasAuthorship W3149698721A5039213686 @default.
- W3149698721 hasAuthorship W3149698721A5059577640 @default.
- W3149698721 hasAuthorship W3149698721A5062980212 @default.
- W3149698721 hasConcept C115961682 @default.
- W3149698721 hasConcept C121332964 @default.
- W3149698721 hasConcept C12713177 @default.
- W3149698721 hasConcept C134306372 @default.
- W3149698721 hasConcept C153180895 @default.
- W3149698721 hasConcept C154945302 @default.
- W3149698721 hasConcept C163258240 @default.
- W3149698721 hasConcept C2780992000 @default.
- W3149698721 hasConcept C31972630 @default.
- W3149698721 hasConcept C33923547 @default.
- W3149698721 hasConcept C36503486 @default.
- W3149698721 hasConcept C37736160 @default.
- W3149698721 hasConcept C38652104 @default.
- W3149698721 hasConcept C41008148 @default.
- W3149698721 hasConcept C62520636 @default.
- W3149698721 hasConcept C84418412 @default.
- W3149698721 hasConceptScore W3149698721C115961682 @default.
- W3149698721 hasConceptScore W3149698721C121332964 @default.
- W3149698721 hasConceptScore W3149698721C12713177 @default.
- W3149698721 hasConceptScore W3149698721C134306372 @default.
- W3149698721 hasConceptScore W3149698721C153180895 @default.
- W3149698721 hasConceptScore W3149698721C154945302 @default.
- W3149698721 hasConceptScore W3149698721C163258240 @default.
- W3149698721 hasConceptScore W3149698721C2780992000 @default.
- W3149698721 hasConceptScore W3149698721C31972630 @default.
- W3149698721 hasConceptScore W3149698721C33923547 @default.
- W3149698721 hasConceptScore W3149698721C36503486 @default.
- W3149698721 hasConceptScore W3149698721C37736160 @default.
- W3149698721 hasConceptScore W3149698721C38652104 @default.
- W3149698721 hasConceptScore W3149698721C41008148 @default.
- W3149698721 hasConceptScore W3149698721C62520636 @default.
- W3149698721 hasConceptScore W3149698721C84418412 @default.
- W3149698721 hasFunder F4320321001 @default.
- W3149698721 hasIssue "3" @default.
- W3149698721 hasLocation W31496987211 @default.
- W3149698721 hasOpenAccess W3149698721 @default.
- W3149698721 hasPrimaryLocation W31496987211 @default.
- W3149698721 hasRelatedWork W2005185696 @default.
- W3149698721 hasRelatedWork W2092957489 @default.
- W3149698721 hasRelatedWork W2130228941 @default.
- W3149698721 hasRelatedWork W2161229648 @default.
- W3149698721 hasRelatedWork W2235753890 @default.
- W3149698721 hasRelatedWork W2782118220 @default.
- W3149698721 hasRelatedWork W2884022884 @default.
- W3149698721 hasRelatedWork W2914998939 @default.
- W3149698721 hasRelatedWork W2993674027 @default.
- W3149698721 hasRelatedWork W3003183197 @default.
- W3149698721 hasVolume "32" @default.
- W3149698721 isParatext "false" @default.
- W3149698721 isRetracted "false" @default.
- W3149698721 magId "3149698721" @default.
- W3149698721 workType "article" @default.