Matches in SemOpenAlex for { <https://semopenalex.org/work/W3149782582> ?p ?o ?g. }
- W3149782582 endingPage "106126" @default.
- W3149782582 startingPage "106126" @default.
- W3149782582 abstract "An optimal strategy for building realistic geological models must combine different geophysical techniques, each with its advantages and limitations. However, dealing with multiple geophysical datasets to derive a geological interpretation is not straightforward since geophysical parameters are not always functionally related. In this work, we propose an innovative approach consisting of using machine learning techniques to jointly interpret three geophysical datasets (a pseudo-3D resistivity model, a 3D velocity model, and 4 well-logs). These datasets, among others, were acquired to characterize the suitability of an evaporitic sequence for hosting a temporary storage facility of hazardous radioactive waste, which was planned in Villar de Cañas (Spain). Our strategy consisted of integrating both models in a single 3D bi-parametric grid that nested the velocity and resistivity values in each node. We then used a supervised learning algorithm to lithologically classify each node according to a training set based on the borehole data, which acts as ground truth. The training set is composed of classifiers that lithologically label resistivity-velocity pairs. However, the very shallow nodes lack classifiers due to the poor well-log coverage at the top part of the evaporitic sequence. To fill this gap, we computed an unsupervised cluster analysis that provided new classes to complete the training set. Finally, the supervised classification was applied, providing a new 3D lithology model that is far more consistent with the geology than the models derived from each parameter independently. The 3D model also revealed geological features previously unknown, notably the existence of an inactive fault. The proposed method can be applied to integrate and jointly interpret any kind of multidisciplinary datasets in a wide range of geoscientific problems, including natural resource exploration, geological storage, environmental monitoring, civil engineering practice, and hazard assessment." @default.
- W3149782582 created "2021-04-13" @default.
- W3149782582 creator A5007886934 @default.
- W3149782582 creator A5011056229 @default.
- W3149782582 creator A5052608959 @default.
- W3149782582 creator A5053527333 @default.
- W3149782582 creator A5059043559 @default.
- W3149782582 creator A5070650776 @default.
- W3149782582 creator A5081858310 @default.
- W3149782582 date "2021-07-01" @default.
- W3149782582 modified "2023-10-02" @default.
- W3149782582 title "Joint interpretation of geophysical data: Applying machine learning to the modeling of an evaporitic sequence in Villar de Cañas (Spain)" @default.
- W3149782582 cites W1274382487 @default.
- W3149782582 cites W1865807956 @default.
- W3149782582 cites W1965722626 @default.
- W3149782582 cites W1973401545 @default.
- W3149782582 cites W1978366778 @default.
- W3149782582 cites W1979179235 @default.
- W3149782582 cites W1996881001 @default.
- W3149782582 cites W2006634276 @default.
- W3149782582 cites W2008406979 @default.
- W3149782582 cites W2020185841 @default.
- W3149782582 cites W2070222524 @default.
- W3149782582 cites W2108064160 @default.
- W3149782582 cites W2109455912 @default.
- W3149782582 cites W2113248292 @default.
- W3149782582 cites W2151948503 @default.
- W3149782582 cites W2154216658 @default.
- W3149782582 cites W2157573255 @default.
- W3149782582 cites W2160866848 @default.
- W3149782582 cites W2173940601 @default.
- W3149782582 cites W2213235377 @default.
- W3149782582 cites W2335468769 @default.
- W3149782582 cites W2341053404 @default.
- W3149782582 cites W2345680641 @default.
- W3149782582 cites W2422982530 @default.
- W3149782582 cites W2519132385 @default.
- W3149782582 cites W2742456366 @default.
- W3149782582 cites W278533853 @default.
- W3149782582 cites W2888745622 @default.
- W3149782582 cites W3088092944 @default.
- W3149782582 cites W3107569396 @default.
- W3149782582 doi "https://doi.org/10.1016/j.enggeo.2021.106126" @default.
- W3149782582 hasPublicationYear "2021" @default.
- W3149782582 type Work @default.
- W3149782582 sameAs 3149782582 @default.
- W3149782582 citedByCount "15" @default.
- W3149782582 countsByYear W31497825822021 @default.
- W3149782582 countsByYear W31497825822022 @default.
- W3149782582 countsByYear W31497825822023 @default.
- W3149782582 crossrefType "journal-article" @default.
- W3149782582 hasAuthorship W3149782582A5007886934 @default.
- W3149782582 hasAuthorship W3149782582A5011056229 @default.
- W3149782582 hasAuthorship W3149782582A5052608959 @default.
- W3149782582 hasAuthorship W3149782582A5053527333 @default.
- W3149782582 hasAuthorship W3149782582A5059043559 @default.
- W3149782582 hasAuthorship W3149782582A5070650776 @default.
- W3149782582 hasAuthorship W3149782582A5081858310 @default.
- W3149782582 hasBestOaLocation W31497825821 @default.
- W3149782582 hasConcept C105795698 @default.
- W3149782582 hasConcept C117251300 @default.
- W3149782582 hasConcept C119857082 @default.
- W3149782582 hasConcept C122792734 @default.
- W3149782582 hasConcept C124101348 @default.
- W3149782582 hasConcept C127313418 @default.
- W3149782582 hasConcept C146849305 @default.
- W3149782582 hasConcept C150560799 @default.
- W3149782582 hasConcept C151730666 @default.
- W3149782582 hasConcept C154945302 @default.
- W3149782582 hasConcept C177264268 @default.
- W3149782582 hasConcept C199360897 @default.
- W3149782582 hasConcept C235608 @default.
- W3149782582 hasConcept C2778112365 @default.
- W3149782582 hasConcept C33923547 @default.
- W3149782582 hasConcept C41008148 @default.
- W3149782582 hasConcept C54355233 @default.
- W3149782582 hasConcept C8058405 @default.
- W3149782582 hasConcept C86803240 @default.
- W3149782582 hasConceptScore W3149782582C105795698 @default.
- W3149782582 hasConceptScore W3149782582C117251300 @default.
- W3149782582 hasConceptScore W3149782582C119857082 @default.
- W3149782582 hasConceptScore W3149782582C122792734 @default.
- W3149782582 hasConceptScore W3149782582C124101348 @default.
- W3149782582 hasConceptScore W3149782582C127313418 @default.
- W3149782582 hasConceptScore W3149782582C146849305 @default.
- W3149782582 hasConceptScore W3149782582C150560799 @default.
- W3149782582 hasConceptScore W3149782582C151730666 @default.
- W3149782582 hasConceptScore W3149782582C154945302 @default.
- W3149782582 hasConceptScore W3149782582C177264268 @default.
- W3149782582 hasConceptScore W3149782582C199360897 @default.
- W3149782582 hasConceptScore W3149782582C235608 @default.
- W3149782582 hasConceptScore W3149782582C2778112365 @default.
- W3149782582 hasConceptScore W3149782582C33923547 @default.
- W3149782582 hasConceptScore W3149782582C41008148 @default.
- W3149782582 hasConceptScore W3149782582C54355233 @default.
- W3149782582 hasConceptScore W3149782582C8058405 @default.
- W3149782582 hasConceptScore W3149782582C86803240 @default.
- W3149782582 hasFunder F4320315062 @default.