Matches in SemOpenAlex for { <https://semopenalex.org/work/W3149785004> ?p ?o ?g. }
- W3149785004 endingPage "49682" @default.
- W3149785004 startingPage "49662" @default.
- W3149785004 abstract "Advanced persistent threats (APTs) have emerged as multi-stage attacks that have targeted nation-states and their associated entities, including private and corporate sectors. Cyber deception has emerged as a defense approach to secure our cyber infrastructure from APTs. Practical deployment of cyber deception relies on defenders' ability to place decoy nodes along the APT path optimally. This paper presents a cyber deception approach focused on predicting the most likely sequence of attack paths and deploying decoy nodes along the predicted path. Our proposed approach combines reactive (graph analysis) and proactive (cyber deception technology) defense to thwart the adversaries' lateral movement. The proposed approach is realized through two phases. The first phase predicts the most likely attack path based on Intrusion Detection System (IDS) alerts and network trace, and the second phase is determining optimal deployment of decoy nodes along the predicted path. We employ transition probabilities in a Hidden Markov Model to predict the path. In the second phase, we utilize the predicted attack path to deploy decoy nodes. However, it is likely that the attacker will not follow that predicted path to move laterally. To address this challenge, we employ a Partially Observable Monte-Carlo Planning (POMCP) framework. POMCP helps the defender assess several defense actions to block the attacker when it deviates from the predicted path. The evaluation results show that our approach can predict the most likely attack paths and thwarts the adversarial lateral movement." @default.
- W3149785004 created "2021-04-13" @default.
- W3149785004 creator A5030759234 @default.
- W3149785004 creator A5042072991 @default.
- W3149785004 creator A5056490129 @default.
- W3149785004 creator A5065745202 @default.
- W3149785004 creator A5090126029 @default.
- W3149785004 date "2021-01-01" @default.
- W3149785004 modified "2023-10-01" @default.
- W3149785004 title "Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement" @default.
- W3149785004 cites W1526913711 @default.
- W3149785004 cites W1936523258 @default.
- W3149785004 cites W1943462367 @default.
- W3149785004 cites W1970903699 @default.
- W3149785004 cites W1973240709 @default.
- W3149785004 cites W1983631181 @default.
- W3149785004 cites W1987553702 @default.
- W3149785004 cites W1994920437 @default.
- W3149785004 cites W2004208486 @default.
- W3149785004 cites W2013815105 @default.
- W3149785004 cites W2021998574 @default.
- W3149785004 cites W2028698981 @default.
- W3149785004 cites W2058711915 @default.
- W3149785004 cites W2077937403 @default.
- W3149785004 cites W2084289603 @default.
- W3149785004 cites W2099430963 @default.
- W3149785004 cites W2105594594 @default.
- W3149785004 cites W2109766389 @default.
- W3149785004 cites W2113152757 @default.
- W3149785004 cites W2122376491 @default.
- W3149785004 cites W2125838338 @default.
- W3149785004 cites W2131875370 @default.
- W3149785004 cites W2136495567 @default.
- W3149785004 cites W2153331007 @default.
- W3149785004 cites W2168405694 @default.
- W3149785004 cites W2171924504 @default.
- W3149785004 cites W2342850280 @default.
- W3149785004 cites W2505170670 @default.
- W3149785004 cites W2520594201 @default.
- W3149785004 cites W2792721951 @default.
- W3149785004 cites W2910711617 @default.
- W3149785004 cites W2959653735 @default.
- W3149785004 cites W4249173680 @default.
- W3149785004 cites W4252232290 @default.
- W3149785004 doi "https://doi.org/10.1109/access.2021.3069105" @default.
- W3149785004 hasPublicationYear "2021" @default.
- W3149785004 type Work @default.
- W3149785004 sameAs 3149785004 @default.
- W3149785004 citedByCount "11" @default.
- W3149785004 countsByYear W31497850042021 @default.
- W3149785004 countsByYear W31497850042022 @default.
- W3149785004 countsByYear W31497850042023 @default.
- W3149785004 crossrefType "journal-article" @default.
- W3149785004 hasAuthorship W3149785004A5030759234 @default.
- W3149785004 hasAuthorship W3149785004A5042072991 @default.
- W3149785004 hasAuthorship W3149785004A5056490129 @default.
- W3149785004 hasAuthorship W3149785004A5065745202 @default.
- W3149785004 hasAuthorship W3149785004A5090126029 @default.
- W3149785004 hasBestOaLocation W31497850041 @default.
- W3149785004 hasConcept C105339364 @default.
- W3149785004 hasConcept C111919701 @default.
- W3149785004 hasConcept C154945302 @default.
- W3149785004 hasConcept C15744967 @default.
- W3149785004 hasConcept C170493617 @default.
- W3149785004 hasConcept C185592680 @default.
- W3149785004 hasConcept C23224414 @default.
- W3149785004 hasConcept C2777735758 @default.
- W3149785004 hasConcept C2779179475 @default.
- W3149785004 hasConcept C2779267917 @default.
- W3149785004 hasConcept C31258907 @default.
- W3149785004 hasConcept C35525427 @default.
- W3149785004 hasConcept C38652104 @default.
- W3149785004 hasConcept C41008148 @default.
- W3149785004 hasConcept C55493867 @default.
- W3149785004 hasConcept C77805123 @default.
- W3149785004 hasConceptScore W3149785004C105339364 @default.
- W3149785004 hasConceptScore W3149785004C111919701 @default.
- W3149785004 hasConceptScore W3149785004C154945302 @default.
- W3149785004 hasConceptScore W3149785004C15744967 @default.
- W3149785004 hasConceptScore W3149785004C170493617 @default.
- W3149785004 hasConceptScore W3149785004C185592680 @default.
- W3149785004 hasConceptScore W3149785004C23224414 @default.
- W3149785004 hasConceptScore W3149785004C2777735758 @default.
- W3149785004 hasConceptScore W3149785004C2779179475 @default.
- W3149785004 hasConceptScore W3149785004C2779267917 @default.
- W3149785004 hasConceptScore W3149785004C31258907 @default.
- W3149785004 hasConceptScore W3149785004C35525427 @default.
- W3149785004 hasConceptScore W3149785004C38652104 @default.
- W3149785004 hasConceptScore W3149785004C41008148 @default.
- W3149785004 hasConceptScore W3149785004C55493867 @default.
- W3149785004 hasConceptScore W3149785004C77805123 @default.
- W3149785004 hasLocation W31497850041 @default.
- W3149785004 hasLocation W31497850042 @default.
- W3149785004 hasOpenAccess W3149785004 @default.
- W3149785004 hasPrimaryLocation W31497850041 @default.
- W3149785004 hasRelatedWork W1936216256 @default.
- W3149785004 hasRelatedWork W2000643452 @default.
- W3149785004 hasRelatedWork W2181326461 @default.