Matches in SemOpenAlex for { <https://semopenalex.org/work/W3149793055> ?p ?o ?g. }
- W3149793055 endingPage "217" @default.
- W3149793055 startingPage "206" @default.
- W3149793055 abstract "Objectives : In this study, we select input factors for machine learning models to predict dissolved oxygen (DO) in Gyeongan Stream and compare results of performance evaluation indicators to find the optimal model.Methods : The water quality data from the specific points of Gyeongan Stream were collected between January 15, 1998 and December 30, 2019. The pretreatment data were divided into train and test data with the ratio of 7:3. We used random forest (RF), artificial neural network (ANN), convolutional neural network (CNN), and gated recurrent unit (GRU) among machine learning. RF and ANN were tested by both random split and time series data, while CNN and GRU conducted the experiment using only time series data. Performance evaluation indicators such as square of the correlation coefficient (R<sup>2</sup>), root mean square error (RMSE), and mean absolute error (MAE) were used to compare the optimal results for the models.Results and Discussion : Based on the RF variable importance results and references, water temperature, pH, electrical conductivity, PO<sub>4</sub>-P, NH<sub>4</sub>-N, total phosphorus, suspended solids, and NO<sub>3</sub>-N were used as input factors. Both RF and ANN performed better with time series data than random split. The model performance was good in order of RF > CNN > GRU > ANN.Conclusions : The eight input factors (water temperature, pH, electrical conductivity, PO<sub>4</sub>-P, NH<sub>4</sub>-N, total phosphorus, suspended solids, and NO<sub>3</sub>-N) were selected for machine learning models to predict DO in Gyeongan Stream. The best model for DO prediction was the RF model with time series data. Therefore, we suggest that the RF with the eight input factors could be used to predict the DO in streams." @default.
- W3149793055 created "2021-04-13" @default.
- W3149793055 creator A5009992526 @default.
- W3149793055 creator A5010808931 @default.
- W3149793055 creator A5014384319 @default.
- W3149793055 creator A5055486628 @default.
- W3149793055 date "2021-03-31" @default.
- W3149793055 modified "2023-09-25" @default.
- W3149793055 title "Selection of Input Factors and Comparison of Machine Learning Models for Prediction of Dissolved Oxygen in Gyeongan Stream" @default.
- W3149793055 cites W1979344016 @default.
- W3149793055 cites W2002098463 @default.
- W3149793055 cites W2017978747 @default.
- W3149793055 cites W2027333203 @default.
- W3149793055 cites W2034672247 @default.
- W3149793055 cites W2043449394 @default.
- W3149793055 cites W2043458367 @default.
- W3149793055 cites W2045179876 @default.
- W3149793055 cites W2077011856 @default.
- W3149793055 cites W2139482802 @default.
- W3149793055 cites W2142097385 @default.
- W3149793055 cites W2418448134 @default.
- W3149793055 cites W2505234920 @default.
- W3149793055 cites W2579195240 @default.
- W3149793055 cites W2740291983 @default.
- W3149793055 cites W2766736793 @default.
- W3149793055 cites W2769851728 @default.
- W3149793055 cites W2791905659 @default.
- W3149793055 cites W2800273269 @default.
- W3149793055 cites W2802303205 @default.
- W3149793055 cites W2802720599 @default.
- W3149793055 cites W2920641855 @default.
- W3149793055 cites W2922995703 @default.
- W3149793055 cites W2944905287 @default.
- W3149793055 cites W2969498444 @default.
- W3149793055 cites W2969685114 @default.
- W3149793055 cites W2999027251 @default.
- W3149793055 cites W3005619874 @default.
- W3149793055 cites W3005638377 @default.
- W3149793055 cites W3006101764 @default.
- W3149793055 cites W3035553409 @default.
- W3149793055 cites W3038216930 @default.
- W3149793055 cites W3046128938 @default.
- W3149793055 cites W3081276736 @default.
- W3149793055 cites W4212883601 @default.
- W3149793055 cites W4244540455 @default.
- W3149793055 cites W928753837 @default.
- W3149793055 doi "https://doi.org/10.4491/ksee.2021.43.3.206" @default.
- W3149793055 hasPublicationYear "2021" @default.
- W3149793055 type Work @default.
- W3149793055 sameAs 3149793055 @default.
- W3149793055 citedByCount "1" @default.
- W3149793055 countsByYear W31497930552023 @default.
- W3149793055 crossrefType "journal-article" @default.
- W3149793055 hasAuthorship W3149793055A5009992526 @default.
- W3149793055 hasAuthorship W3149793055A5010808931 @default.
- W3149793055 hasAuthorship W3149793055A5014384319 @default.
- W3149793055 hasAuthorship W3149793055A5055486628 @default.
- W3149793055 hasBestOaLocation W31497930551 @default.
- W3149793055 hasConcept C105795698 @default.
- W3149793055 hasConcept C113196181 @default.
- W3149793055 hasConcept C11413529 @default.
- W3149793055 hasConcept C119857082 @default.
- W3149793055 hasConcept C139945424 @default.
- W3149793055 hasConcept C154945302 @default.
- W3149793055 hasConcept C169258074 @default.
- W3149793055 hasConcept C185592680 @default.
- W3149793055 hasConcept C188154048 @default.
- W3149793055 hasConcept C2780092901 @default.
- W3149793055 hasConcept C33923547 @default.
- W3149793055 hasConcept C41008148 @default.
- W3149793055 hasConcept C43617362 @default.
- W3149793055 hasConcept C50644808 @default.
- W3149793055 hasConcept C81363708 @default.
- W3149793055 hasConceptScore W3149793055C105795698 @default.
- W3149793055 hasConceptScore W3149793055C113196181 @default.
- W3149793055 hasConceptScore W3149793055C11413529 @default.
- W3149793055 hasConceptScore W3149793055C119857082 @default.
- W3149793055 hasConceptScore W3149793055C139945424 @default.
- W3149793055 hasConceptScore W3149793055C154945302 @default.
- W3149793055 hasConceptScore W3149793055C169258074 @default.
- W3149793055 hasConceptScore W3149793055C185592680 @default.
- W3149793055 hasConceptScore W3149793055C188154048 @default.
- W3149793055 hasConceptScore W3149793055C2780092901 @default.
- W3149793055 hasConceptScore W3149793055C33923547 @default.
- W3149793055 hasConceptScore W3149793055C41008148 @default.
- W3149793055 hasConceptScore W3149793055C43617362 @default.
- W3149793055 hasConceptScore W3149793055C50644808 @default.
- W3149793055 hasConceptScore W3149793055C81363708 @default.
- W3149793055 hasFunder F4320321248 @default.
- W3149793055 hasIssue "3" @default.
- W3149793055 hasLocation W31497930551 @default.
- W3149793055 hasLocation W31497930552 @default.
- W3149793055 hasOpenAccess W3149793055 @default.
- W3149793055 hasPrimaryLocation W31497930551 @default.
- W3149793055 hasRelatedWork W2188032833 @default.
- W3149793055 hasRelatedWork W2911455822 @default.
- W3149793055 hasRelatedWork W2995227436 @default.
- W3149793055 hasRelatedWork W3021430260 @default.