Matches in SemOpenAlex for { <https://semopenalex.org/work/W3149824810> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3149824810 abstract "Line loss plays a vital role in evaluating the economic operation of the power system. However, in the 10KV distribution network, due to the backward configuration of measurement and testing equipment, it is difficult to collect data and nodes with too much operating information, resulting in line loss. Forecasting becomes more and more cumbersome and difficult. Therefore, a method of line loss prediction for distribution network based on Grey Relation Analysis and XGboost is proposed in this paper. Firstly, determine the relationship between line loss and electrical indicators through Grey Relation Analysis, determine the weight of each feature indicator by using the entropy weight method to achieve dimensionality reduction of feature data, and select the best feature as the input of the prediction model. The XGboost algorithm is used to increase the penalty function regular term to optimize the loss function and establish the prediction model. Finally, 350 10kV lines are predicted, and the theoretical line loss calculation value and the BP neural network algorithm prediction value are compared to verify the practicability of the proposed method. Rationality and effectiveness." @default.
- W3149824810 created "2021-04-13" @default.
- W3149824810 creator A5019337760 @default.
- W3149824810 creator A5040862135 @default.
- W3149824810 creator A5044923788 @default.
- W3149824810 creator A5077933413 @default.
- W3149824810 date "2021-03-26" @default.
- W3149824810 modified "2023-10-05" @default.
- W3149824810 title "Prediction of Distribution Network Line Loss Based on Grey Relation Analysis and XGboost" @default.
- W3149824810 cites W1966991711 @default.
- W3149824810 cites W2042579914 @default.
- W3149824810 cites W2087405273 @default.
- W3149824810 cites W2104352293 @default.
- W3149824810 cites W2108416774 @default.
- W3149824810 doi "https://doi.org/10.1109/icbaie52039.2021.9389997" @default.
- W3149824810 hasPublicationYear "2021" @default.
- W3149824810 type Work @default.
- W3149824810 sameAs 3149824810 @default.
- W3149824810 citedByCount "4" @default.
- W3149824810 countsByYear W31498248102022 @default.
- W3149824810 countsByYear W31498248102023 @default.
- W3149824810 crossrefType "proceedings-article" @default.
- W3149824810 hasAuthorship W3149824810A5019337760 @default.
- W3149824810 hasAuthorship W3149824810A5040862135 @default.
- W3149824810 hasAuthorship W3149824810A5044923788 @default.
- W3149824810 hasAuthorship W3149824810A5077933413 @default.
- W3149824810 hasConcept C106301342 @default.
- W3149824810 hasConcept C11413529 @default.
- W3149824810 hasConcept C121332964 @default.
- W3149824810 hasConcept C124101348 @default.
- W3149824810 hasConcept C126255220 @default.
- W3149824810 hasConcept C127413603 @default.
- W3149824810 hasConcept C138885662 @default.
- W3149824810 hasConcept C153180895 @default.
- W3149824810 hasConcept C154945302 @default.
- W3149824810 hasConcept C163258240 @default.
- W3149824810 hasConcept C167981619 @default.
- W3149824810 hasConcept C198352243 @default.
- W3149824810 hasConcept C200601418 @default.
- W3149824810 hasConcept C2524010 @default.
- W3149824810 hasConcept C25343380 @default.
- W3149824810 hasConcept C2776401178 @default.
- W3149824810 hasConcept C33923547 @default.
- W3149824810 hasConcept C41008148 @default.
- W3149824810 hasConcept C41895202 @default.
- W3149824810 hasConcept C50644808 @default.
- W3149824810 hasConcept C62520636 @default.
- W3149824810 hasConcept C70518039 @default.
- W3149824810 hasConcept C89227174 @default.
- W3149824810 hasConceptScore W3149824810C106301342 @default.
- W3149824810 hasConceptScore W3149824810C11413529 @default.
- W3149824810 hasConceptScore W3149824810C121332964 @default.
- W3149824810 hasConceptScore W3149824810C124101348 @default.
- W3149824810 hasConceptScore W3149824810C126255220 @default.
- W3149824810 hasConceptScore W3149824810C127413603 @default.
- W3149824810 hasConceptScore W3149824810C138885662 @default.
- W3149824810 hasConceptScore W3149824810C153180895 @default.
- W3149824810 hasConceptScore W3149824810C154945302 @default.
- W3149824810 hasConceptScore W3149824810C163258240 @default.
- W3149824810 hasConceptScore W3149824810C167981619 @default.
- W3149824810 hasConceptScore W3149824810C198352243 @default.
- W3149824810 hasConceptScore W3149824810C200601418 @default.
- W3149824810 hasConceptScore W3149824810C2524010 @default.
- W3149824810 hasConceptScore W3149824810C25343380 @default.
- W3149824810 hasConceptScore W3149824810C2776401178 @default.
- W3149824810 hasConceptScore W3149824810C33923547 @default.
- W3149824810 hasConceptScore W3149824810C41008148 @default.
- W3149824810 hasConceptScore W3149824810C41895202 @default.
- W3149824810 hasConceptScore W3149824810C50644808 @default.
- W3149824810 hasConceptScore W3149824810C62520636 @default.
- W3149824810 hasConceptScore W3149824810C70518039 @default.
- W3149824810 hasConceptScore W3149824810C89227174 @default.
- W3149824810 hasLocation W31498248101 @default.
- W3149824810 hasOpenAccess W3149824810 @default.
- W3149824810 hasPrimaryLocation W31498248101 @default.
- W3149824810 hasRelatedWork W2066259560 @default.
- W3149824810 hasRelatedWork W2172836935 @default.
- W3149824810 hasRelatedWork W2355203151 @default.
- W3149824810 hasRelatedWork W2382607599 @default.
- W3149824810 hasRelatedWork W2391795751 @default.
- W3149824810 hasRelatedWork W2546942002 @default.
- W3149824810 hasRelatedWork W2772780115 @default.
- W3149824810 hasRelatedWork W2970216048 @default.
- W3149824810 hasRelatedWork W3166423295 @default.
- W3149824810 hasRelatedWork W2886616187 @default.
- W3149824810 isParatext "false" @default.
- W3149824810 isRetracted "false" @default.
- W3149824810 magId "3149824810" @default.
- W3149824810 workType "article" @default.