Matches in SemOpenAlex for { <https://semopenalex.org/work/W3149935611> ?p ?o ?g. }
- W3149935611 endingPage "103942" @default.
- W3149935611 startingPage "103942" @default.
- W3149935611 abstract "Acoustic emission (AE) and electromagnetic radiation (EMR) monitoring technology have been widely used in coal and rock dynamic disaster monitoring. However, the prediction of coal and gas outburst using original signal directly may cause the false and missing alarms due to the failure to identify valuable potential information, which may lead to the decrease of prediction accuracy. This paper presents a new method to identify the precursor features of coal and gas outburst using two-dimensional Convolutional Neural Network (CNN). Empirical mode decomposition (EMD) was performed for AE or EMR signals, and the Intrinsic Mode Functions (IMFs) with Variance Contribution Rate (VCR) greater than 90% were merged into modified signal. Since the frequency of AE or EMR signal can change with different coal and rock fracture stages, one-dimensional modified signal was transformed into a two-dimensional time-frequency graph using the short-time Fourier transform (STFT). The time-frequency graph was input into CNN that recognizes the time-frequency characteristics of AE or EMR using SoftMax regression at the end of the network. Compared with the original signal, the precursor characteristics of modified AE or EMR signals can be better learned by CNN. The proposed method was applied to the Jinjia Coal Mine database which was identified as having outburst risk, and it was found that the recognition accuracy was better than other approaches. The proposed method achieves maximum recognition accuracy of 98.00% (AE), and 97.20% (EMR) in Jinjia Coal Mine database, respectively." @default.
- W3149935611 created "2021-04-13" @default.
- W3149935611 creator A5011021661 @default.
- W3149935611 creator A5034397414 @default.
- W3149935611 creator A5036529080 @default.
- W3149935611 creator A5051764879 @default.
- W3149935611 creator A5065270268 @default.
- W3149935611 creator A5075978121 @default.
- W3149935611 creator A5080102032 @default.
- W3149935611 creator A5083581319 @default.
- W3149935611 creator A5091337500 @default.
- W3149935611 date "2021-06-01" @default.
- W3149935611 modified "2023-09-30" @default.
- W3149935611 title "Deep learning approach to coal and gas outburst recognition employing modified AE and EMR signal from empirical mode decomposition and time-frequency analysis" @default.
- W3149935611 cites W2005194619 @default.
- W3149935611 cites W2054812462 @default.
- W3149935611 cites W2085281262 @default.
- W3149935611 cites W2167389327 @default.
- W3149935611 cites W2190031236 @default.
- W3149935611 cites W2395613157 @default.
- W3149935611 cites W2753671882 @default.
- W3149935611 cites W2796087643 @default.
- W3149935611 cites W2901818279 @default.
- W3149935611 cites W2936360477 @default.
- W3149935611 cites W2939574265 @default.
- W3149935611 cites W2942431093 @default.
- W3149935611 cites W2972784342 @default.
- W3149935611 cites W2993954248 @default.
- W3149935611 cites W3001600144 @default.
- W3149935611 cites W3001688293 @default.
- W3149935611 cites W3005177200 @default.
- W3149935611 cites W3007046471 @default.
- W3149935611 cites W3012991225 @default.
- W3149935611 cites W3016830854 @default.
- W3149935611 cites W3024521821 @default.
- W3149935611 cites W3033045904 @default.
- W3149935611 cites W3036244893 @default.
- W3149935611 cites W3037799115 @default.
- W3149935611 cites W3047419688 @default.
- W3149935611 cites W3080831608 @default.
- W3149935611 cites W3131238286 @default.
- W3149935611 doi "https://doi.org/10.1016/j.jngse.2021.103942" @default.
- W3149935611 hasPublicationYear "2021" @default.
- W3149935611 type Work @default.
- W3149935611 sameAs 3149935611 @default.
- W3149935611 citedByCount "17" @default.
- W3149935611 countsByYear W31499356112021 @default.
- W3149935611 countsByYear W31499356112022 @default.
- W3149935611 countsByYear W31499356112023 @default.
- W3149935611 crossrefType "journal-article" @default.
- W3149935611 hasAuthorship W3149935611A5011021661 @default.
- W3149935611 hasAuthorship W3149935611A5034397414 @default.
- W3149935611 hasAuthorship W3149935611A5036529080 @default.
- W3149935611 hasAuthorship W3149935611A5051764879 @default.
- W3149935611 hasAuthorship W3149935611A5065270268 @default.
- W3149935611 hasAuthorship W3149935611A5075978121 @default.
- W3149935611 hasAuthorship W3149935611A5080102032 @default.
- W3149935611 hasAuthorship W3149935611A5083581319 @default.
- W3149935611 hasAuthorship W3149935611A5091337500 @default.
- W3149935611 hasConcept C102519508 @default.
- W3149935611 hasConcept C106131492 @default.
- W3149935611 hasConcept C121332964 @default.
- W3149935611 hasConcept C127413603 @default.
- W3149935611 hasConcept C134306372 @default.
- W3149935611 hasConcept C142433447 @default.
- W3149935611 hasConcept C153180895 @default.
- W3149935611 hasConcept C154945302 @default.
- W3149935611 hasConcept C166386157 @default.
- W3149935611 hasConcept C174598085 @default.
- W3149935611 hasConcept C199360897 @default.
- W3149935611 hasConcept C203024314 @default.
- W3149935611 hasConcept C24890656 @default.
- W3149935611 hasConcept C25570617 @default.
- W3149935611 hasConcept C2779843651 @default.
- W3149935611 hasConcept C28490314 @default.
- W3149935611 hasConcept C31972630 @default.
- W3149935611 hasConcept C33923547 @default.
- W3149935611 hasConcept C41008148 @default.
- W3149935611 hasConcept C518851703 @default.
- W3149935611 hasConcept C548081761 @default.
- W3149935611 hasConcept C554190296 @default.
- W3149935611 hasConcept C76155785 @default.
- W3149935611 hasConcept C81363708 @default.
- W3149935611 hasConceptScore W3149935611C102519508 @default.
- W3149935611 hasConceptScore W3149935611C106131492 @default.
- W3149935611 hasConceptScore W3149935611C121332964 @default.
- W3149935611 hasConceptScore W3149935611C127413603 @default.
- W3149935611 hasConceptScore W3149935611C134306372 @default.
- W3149935611 hasConceptScore W3149935611C142433447 @default.
- W3149935611 hasConceptScore W3149935611C153180895 @default.
- W3149935611 hasConceptScore W3149935611C154945302 @default.
- W3149935611 hasConceptScore W3149935611C166386157 @default.
- W3149935611 hasConceptScore W3149935611C174598085 @default.
- W3149935611 hasConceptScore W3149935611C199360897 @default.
- W3149935611 hasConceptScore W3149935611C203024314 @default.
- W3149935611 hasConceptScore W3149935611C24890656 @default.
- W3149935611 hasConceptScore W3149935611C25570617 @default.
- W3149935611 hasConceptScore W3149935611C2779843651 @default.