Matches in SemOpenAlex for { <https://semopenalex.org/work/W3150051937> ?p ?o ?g. }
- W3150051937 endingPage "154" @default.
- W3150051937 startingPage "154" @default.
- W3150051937 abstract "In many enterprises and the private sector, the Internet of Things (IoT) has spread globally. The growing number of different devices connected to the IoT and their various protocols have contributed to the increasing number of attacks, such as denial-of-service (DoS) and remote-to-local (R2L) ones. There are several approaches and techniques that can be used to construct attack detection models, such as machine learning, data mining, and statistical analysis. Nowadays, this technique is commonly used because it can provide precise analysis and results. Therefore, we decided to study the previous literature on the detection of IoT attacks and machine learning in order to understand the process of creating detection models. We also evaluated various datasets used for the models, IoT attack types, independent variables used for the models, evaluation metrics for assessment of models, and monitoring infrastructure using DevSecOps pipelines. We found 49 primary studies, and the detection models were developed using seven different types of machine learning techniques. Most primary studies used IoT device testbed datasets, and others used public datasets such as NSL-KDD and UNSW-NB15. When it comes to measuring the efficiency of models, both numerical and graphical measures are commonly used. Most IoT attacks occur at the network layer according to the literature. If the detection models applied DevSecOps pipelines in development processes for IoT devices, they were more secure. From the results of this paper, we found that machine learning techniques can detect IoT attacks, but there are a few issues in the design of detection models. We also recommend the continued use of hybrid frameworks for the improved detection of IoT attacks, advanced monitoring infrastructure configurations using methods based on software pipelines, and the use of machine learning techniques for advanced supervision and monitoring." @default.
- W3150051937 created "2021-04-13" @default.
- W3150051937 creator A5004734265 @default.
- W3150051937 creator A5024701185 @default.
- W3150051937 creator A5066145645 @default.
- W3150051937 creator A5070694324 @default.
- W3150051937 creator A5078760768 @default.
- W3150051937 date "2021-04-07" @default.
- W3150051937 modified "2023-10-11" @default.
- W3150051937 title "Monitoring Real Time Security Attacks for IoT Systems Using DevSecOps: A Systematic Literature Review" @default.
- W3150051937 cites W2557450880 @default.
- W3150051937 cites W2752291283 @default.
- W3150051937 cites W2759187825 @default.
- W3150051937 cites W2786075294 @default.
- W3150051937 cites W2805186316 @default.
- W3150051937 cites W2810749629 @default.
- W3150051937 cites W2887754224 @default.
- W3150051937 cites W2901828004 @default.
- W3150051937 cites W2924853426 @default.
- W3150051937 cites W2940895343 @default.
- W3150051937 cites W2941288225 @default.
- W3150051937 cites W2948791798 @default.
- W3150051937 cites W2955014922 @default.
- W3150051937 cites W2963834817 @default.
- W3150051937 cites W2968774960 @default.
- W3150051937 cites W2969863125 @default.
- W3150051937 cites W2971269032 @default.
- W3150051937 cites W2990449675 @default.
- W3150051937 cites W2991140181 @default.
- W3150051937 cites W3002543587 @default.
- W3150051937 cites W3010977161 @default.
- W3150051937 cites W3025080732 @default.
- W3150051937 cites W3027374119 @default.
- W3150051937 cites W3033639614 @default.
- W3150051937 cites W3035932795 @default.
- W3150051937 cites W3038836615 @default.
- W3150051937 cites W3039274670 @default.
- W3150051937 cites W3042733640 @default.
- W3150051937 cites W3046533661 @default.
- W3150051937 cites W3047597758 @default.
- W3150051937 cites W3062437734 @default.
- W3150051937 cites W3083951131 @default.
- W3150051937 cites W3085955590 @default.
- W3150051937 cites W3090155631 @default.
- W3150051937 cites W3103998378 @default.
- W3150051937 cites W3112641944 @default.
- W3150051937 cites W3118241656 @default.
- W3150051937 cites W3120598853 @default.
- W3150051937 cites W3120970772 @default.
- W3150051937 cites W3126814579 @default.
- W3150051937 cites W3127059019 @default.
- W3150051937 cites W3215518226 @default.
- W3150051937 doi "https://doi.org/10.3390/info12040154" @default.
- W3150051937 hasPublicationYear "2021" @default.
- W3150051937 type Work @default.
- W3150051937 sameAs 3150051937 @default.
- W3150051937 citedByCount "12" @default.
- W3150051937 countsByYear W31500519372021 @default.
- W3150051937 countsByYear W31500519372022 @default.
- W3150051937 countsByYear W31500519372023 @default.
- W3150051937 crossrefType "journal-article" @default.
- W3150051937 hasAuthorship W3150051937A5004734265 @default.
- W3150051937 hasAuthorship W3150051937A5024701185 @default.
- W3150051937 hasAuthorship W3150051937A5066145645 @default.
- W3150051937 hasAuthorship W3150051937A5070694324 @default.
- W3150051937 hasAuthorship W3150051937A5078760768 @default.
- W3150051937 hasBestOaLocation W31500519371 @default.
- W3150051937 hasConcept C105339364 @default.
- W3150051937 hasConcept C110875604 @default.
- W3150051937 hasConcept C111919701 @default.
- W3150051937 hasConcept C115903868 @default.
- W3150051937 hasConcept C119857082 @default.
- W3150051937 hasConcept C124101348 @default.
- W3150051937 hasConcept C127413603 @default.
- W3150051937 hasConcept C136764020 @default.
- W3150051937 hasConcept C154945302 @default.
- W3150051937 hasConcept C175309249 @default.
- W3150051937 hasConcept C190793597 @default.
- W3150051937 hasConcept C2780801425 @default.
- W3150051937 hasConcept C31258907 @default.
- W3150051937 hasConcept C31395832 @default.
- W3150051937 hasConcept C38652104 @default.
- W3150051937 hasConcept C38822068 @default.
- W3150051937 hasConcept C41008148 @default.
- W3150051937 hasConcept C81860439 @default.
- W3150051937 hasConcept C87717796 @default.
- W3150051937 hasConcept C98045186 @default.
- W3150051937 hasConceptScore W3150051937C105339364 @default.
- W3150051937 hasConceptScore W3150051937C110875604 @default.
- W3150051937 hasConceptScore W3150051937C111919701 @default.
- W3150051937 hasConceptScore W3150051937C115903868 @default.
- W3150051937 hasConceptScore W3150051937C119857082 @default.
- W3150051937 hasConceptScore W3150051937C124101348 @default.
- W3150051937 hasConceptScore W3150051937C127413603 @default.
- W3150051937 hasConceptScore W3150051937C136764020 @default.
- W3150051937 hasConceptScore W3150051937C154945302 @default.
- W3150051937 hasConceptScore W3150051937C175309249 @default.
- W3150051937 hasConceptScore W3150051937C190793597 @default.