Matches in SemOpenAlex for { <https://semopenalex.org/work/W3150264202> ?p ?o ?g. }
- W3150264202 abstract "Reverse engineering mechanistic gene regulatory network (GRN) models with a specific dynamic spatial behavior is an inverse problem without analytical solutions in general. Instead, heuristic machine learning algorithms have been proposed to infer the structure and parameters of a system of equations able to recapitulate a given gene expression pattern. However, these algorithms are computationally intensive as they need to simulate millions of candidate models, which limits their applicability and requires high computational resources. Graphics processing unit (GPU) computing is an affordable alternative for accelerating large-scale scientific computation, yet no method is currently available to exploit GPU technology for the reverse engineering of mechanistic GRNs from spatial phenotypes. Here we present an efficient methodology to parallelize evolutionary algorithms using GPU computing for the inference of mechanistic GRNs that can develop a given gene expression pattern in a multicellular tissue area or cell culture. The proposed approach is based on multi-CPU threads running the lightweight crossover, mutation and selection operators and launching GPU kernels asynchronously. Kernels can run in parallel in a single or multiple GPUs and each kernel simulates and scores the error of a model using the thread parallelism of the GPU. We tested this methodology for the inference of spatiotemporal mechanistic gene regulatory networks (GRNs)-including topology and parameters-that can develop a given 2D gene expression pattern. The results show a 700-fold speedup with respect to a single CPU implementation. This approach can streamline the extraction of knowledge from biological and medical datasets and accelerate the automatic design of GRNs for synthetic biology applications." @default.
- W3150264202 created "2021-04-13" @default.
- W3150264202 creator A5021222550 @default.
- W3150264202 creator A5042442231 @default.
- W3150264202 creator A5088693792 @default.
- W3150264202 date "2021-04-08" @default.
- W3150264202 modified "2023-10-17" @default.
- W3150264202 title "Inference of dynamic spatial GRN models with multi-GPU evolutionary computation" @default.
- W3150264202 cites W1857747897 @default.
- W3150264202 cites W1991138583 @default.
- W3150264202 cites W1991793399 @default.
- W3150264202 cites W2019334886 @default.
- W3150264202 cites W2044525257 @default.
- W3150264202 cites W2072069623 @default.
- W3150264202 cites W2076513103 @default.
- W3150264202 cites W2086876386 @default.
- W3150264202 cites W2103100426 @default.
- W3150264202 cites W2106555403 @default.
- W3150264202 cites W2108350807 @default.
- W3150264202 cites W2111609443 @default.
- W3150264202 cites W2111932463 @default.
- W3150264202 cites W2115664087 @default.
- W3150264202 cites W2119669591 @default.
- W3150264202 cites W2121695897 @default.
- W3150264202 cites W2124334634 @default.
- W3150264202 cites W2124677924 @default.
- W3150264202 cites W2124920465 @default.
- W3150264202 cites W2126345910 @default.
- W3150264202 cites W2127043599 @default.
- W3150264202 cites W2132196970 @default.
- W3150264202 cites W2133357122 @default.
- W3150264202 cites W2148720217 @default.
- W3150264202 cites W2150903265 @default.
- W3150264202 cites W2156066129 @default.
- W3150264202 cites W2159094603 @default.
- W3150264202 cites W2160095931 @default.
- W3150264202 cites W2165073978 @default.
- W3150264202 cites W2166012954 @default.
- W3150264202 cites W2169053773 @default.
- W3150264202 cites W2170527607 @default.
- W3150264202 cites W2179534833 @default.
- W3150264202 cites W2315452447 @default.
- W3150264202 cites W2357463082 @default.
- W3150264202 cites W2477524767 @default.
- W3150264202 cites W2581928278 @default.
- W3150264202 cites W2585976138 @default.
- W3150264202 cites W2590535882 @default.
- W3150264202 cites W2616922646 @default.
- W3150264202 cites W2748889255 @default.
- W3150264202 cites W2805920247 @default.
- W3150264202 cites W2808199112 @default.
- W3150264202 cites W2883977858 @default.
- W3150264202 cites W2900099657 @default.
- W3150264202 cites W2908975485 @default.
- W3150264202 cites W2909132592 @default.
- W3150264202 cites W2927518284 @default.
- W3150264202 cites W2953588232 @default.
- W3150264202 cites W2954914243 @default.
- W3150264202 cites W2974274234 @default.
- W3150264202 cites W2980073351 @default.
- W3150264202 cites W2982500113 @default.
- W3150264202 cites W2999311634 @default.
- W3150264202 cites W3012109984 @default.
- W3150264202 cites W3015456223 @default.
- W3150264202 cites W3038532033 @default.
- W3150264202 cites W3040672684 @default.
- W3150264202 cites W3099289621 @default.
- W3150264202 cites W4238014472 @default.
- W3150264202 cites W607236675 @default.
- W3150264202 doi "https://doi.org/10.1093/bib/bbab104" @default.
- W3150264202 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33834216" @default.
- W3150264202 hasPublicationYear "2021" @default.
- W3150264202 type Work @default.
- W3150264202 sameAs 3150264202 @default.
- W3150264202 citedByCount "3" @default.
- W3150264202 countsByYear W31502642022022 @default.
- W3150264202 countsByYear W31502642022023 @default.
- W3150264202 crossrefType "journal-article" @default.
- W3150264202 hasAuthorship W3150264202A5021222550 @default.
- W3150264202 hasAuthorship W3150264202A5042442231 @default.
- W3150264202 hasAuthorship W3150264202A5088693792 @default.
- W3150264202 hasConcept C11413529 @default.
- W3150264202 hasConcept C114614502 @default.
- W3150264202 hasConcept C121684516 @default.
- W3150264202 hasConcept C122507166 @default.
- W3150264202 hasConcept C154945302 @default.
- W3150264202 hasConcept C165696696 @default.
- W3150264202 hasConcept C173608175 @default.
- W3150264202 hasConcept C21442007 @default.
- W3150264202 hasConcept C2776214188 @default.
- W3150264202 hasConcept C2778119891 @default.
- W3150264202 hasConcept C2779851693 @default.
- W3150264202 hasConcept C33923547 @default.
- W3150264202 hasConcept C38652104 @default.
- W3150264202 hasConcept C41008148 @default.
- W3150264202 hasConcept C45374587 @default.
- W3150264202 hasConcept C50630238 @default.
- W3150264202 hasConcept C68339613 @default.
- W3150264202 hasConcept C74193536 @default.
- W3150264202 hasConceptScore W3150264202C11413529 @default.