Matches in SemOpenAlex for { <https://semopenalex.org/work/W3150268706> ?p ?o ?g. }
- W3150268706 abstract "The nature of the theta point for a polymer in two dimensions has long been debated, with a variety of candidates put forward for the critical exponents. This includes those derived by Duplantier and Saleur (DS) for an exactly solvable model. We use a representation of the problem via the $CP^{N-1}$ sigma model in the limit $N rightarrow 1$ to determine the stability of this critical point. First we prove that the DS critical exponents are robust, so long as the polymer does not cross itself: they can arise in a generic lattice model, and do not require fine tuning. This resolves a longstanding theoretical question. However there is an apparent paradox: two different lattice models, apparently both in the DS universality class, show different numbers of relevant perturbations, apparently leading to contradictory conclusions about the stability of the DS exponents. We explain this in terms of subtle differences between the two models, one of which is fine-tuned (and not strictly in the DS universality class). Next, we allow the polymer to cross itself, as appropriate e.g. to the quasi-2D case. This introduces an additional independent relevant perturbation, so we do not expect the DS exponents to apply. The exponents in the case with crossings will be those of the generic tricritical $O(n)$ model at $n=0$, and different to the case without crossings. We also discuss interesting features of the operator content of the $CP^{N-1}$ model. Simple geometrical arguments show that two operators in this field theory, with very different symmetry properties, have the same scaling dimension for any value of $N$ (equivalently, any value of the loop fugacity). Also we argue that for any value of $N$ the $CP^{N-1}$ model has a marginal parity-odd operator which is related to the loops' winding angle." @default.
- W3150268706 created "2021-04-13" @default.
- W3150268706 creator A5082537491 @default.
- W3150268706 date "2016-05-06" @default.
- W3150268706 modified "2023-10-18" @default.
- W3150268706 title "Universality class of the two-dimensional polymer collapse transition" @default.
- W3150268706 cites W1540967566 @default.
- W3150268706 cites W1564062570 @default.
- W3150268706 cites W1586461430 @default.
- W3150268706 cites W194364720 @default.
- W3150268706 cites W1967721281 @default.
- W3150268706 cites W1969148706 @default.
- W3150268706 cites W1972595847 @default.
- W3150268706 cites W1980368780 @default.
- W3150268706 cites W1981655274 @default.
- W3150268706 cites W1987030319 @default.
- W3150268706 cites W1988459194 @default.
- W3150268706 cites W1995268075 @default.
- W3150268706 cites W1995484074 @default.
- W3150268706 cites W2000936432 @default.
- W3150268706 cites W2003754297 @default.
- W3150268706 cites W2005247962 @default.
- W3150268706 cites W2005513483 @default.
- W3150268706 cites W2010840474 @default.
- W3150268706 cites W2011165852 @default.
- W3150268706 cites W2019558237 @default.
- W3150268706 cites W2021525384 @default.
- W3150268706 cites W2041948597 @default.
- W3150268706 cites W2043756773 @default.
- W3150268706 cites W2048254806 @default.
- W3150268706 cites W2048460052 @default.
- W3150268706 cites W2060547366 @default.
- W3150268706 cites W2061436327 @default.
- W3150268706 cites W2066995913 @default.
- W3150268706 cites W2067954189 @default.
- W3150268706 cites W2068604475 @default.
- W3150268706 cites W2069069622 @default.
- W3150268706 cites W2076095435 @default.
- W3150268706 cites W2078861208 @default.
- W3150268706 cites W2087012044 @default.
- W3150268706 cites W2120781272 @default.
- W3150268706 cites W2131440242 @default.
- W3150268706 cites W2133072662 @default.
- W3150268706 cites W2143524964 @default.
- W3150268706 cites W2144288906 @default.
- W3150268706 cites W2152892062 @default.
- W3150268706 cites W2228732104 @default.
- W3150268706 cites W2964302357 @default.
- W3150268706 cites W3098558829 @default.
- W3150268706 cites W3099835868 @default.
- W3150268706 cites W3102077547 @default.
- W3150268706 cites W3104376521 @default.
- W3150268706 cites W3105403745 @default.
- W3150268706 cites W3105746946 @default.
- W3150268706 cites W3105808736 @default.
- W3150268706 cites W3123785042 @default.
- W3150268706 cites W3126100257 @default.
- W3150268706 cites W3174658623 @default.
- W3150268706 cites W4301787874 @default.
- W3150268706 cites W645512560 @default.
- W3150268706 doi "https://doi.org/10.1103/physreve.93.052502" @default.
- W3150268706 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27300940" @default.
- W3150268706 hasPublicationYear "2016" @default.
- W3150268706 type Work @default.
- W3150268706 sameAs 3150268706 @default.
- W3150268706 citedByCount "7" @default.
- W3150268706 countsByYear W31502687062017 @default.
- W3150268706 countsByYear W31502687062019 @default.
- W3150268706 countsByYear W31502687062020 @default.
- W3150268706 countsByYear W31502687062022 @default.
- W3150268706 countsByYear W31502687062023 @default.
- W3150268706 crossrefType "journal-article" @default.
- W3150268706 hasAuthorship W3150268706A5082537491 @default.
- W3150268706 hasBestOaLocation W31502687062 @default.
- W3150268706 hasConcept C121332964 @default.
- W3150268706 hasConcept C121864883 @default.
- W3150268706 hasConcept C134306372 @default.
- W3150268706 hasConcept C149288129 @default.
- W3150268706 hasConcept C164154869 @default.
- W3150268706 hasConcept C183992945 @default.
- W3150268706 hasConcept C196298200 @default.
- W3150268706 hasConcept C202444582 @default.
- W3150268706 hasConcept C24890656 @default.
- W3150268706 hasConcept C2781204021 @default.
- W3150268706 hasConcept C33332235 @default.
- W3150268706 hasConcept C33923547 @default.
- W3150268706 hasConcept C37914503 @default.
- W3150268706 hasConcept C62520636 @default.
- W3150268706 hasConcept C68532491 @default.
- W3150268706 hasConceptScore W3150268706C121332964 @default.
- W3150268706 hasConceptScore W3150268706C121864883 @default.
- W3150268706 hasConceptScore W3150268706C134306372 @default.
- W3150268706 hasConceptScore W3150268706C149288129 @default.
- W3150268706 hasConceptScore W3150268706C164154869 @default.
- W3150268706 hasConceptScore W3150268706C183992945 @default.
- W3150268706 hasConceptScore W3150268706C196298200 @default.
- W3150268706 hasConceptScore W3150268706C202444582 @default.
- W3150268706 hasConceptScore W3150268706C24890656 @default.
- W3150268706 hasConceptScore W3150268706C2781204021 @default.
- W3150268706 hasConceptScore W3150268706C33332235 @default.