Matches in SemOpenAlex for { <https://semopenalex.org/work/W3150269375> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3150269375 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> Surface air temperature (<span class=inline-formula><i>T</i><sub>a</sub></span>), as an important climate variable, has been used in a wide range of fields such as ecology, hydrology, climatology, epidemiology, and environmental science. However, ground measurements are limited by poor spatial representation and inconsistency, and reanalysis and meteorological forcing datasets suffer from coarse spatial resolution and inaccuracy. Previous studies using satellite data have mainly estimated <span class=inline-formula><i>T</i><sub>a</sub></span> under clear-sky conditions or with limited temporal and spatial coverage. In this study, an all-sky daily mean land <span class=inline-formula><i>T</i><sub>a</sub></span> product at a 1âkm spatial resolution over mainland China for 2003â2019 has been generated mainly from the Moderate Resolution Imaging Spectroradiometer (MODIS) products and the Global Land Data Assimilation System (GLDAS) dataset. Three <span class=inline-formula><i>T</i><sub>a</sub></span> estimation models based on random forest were trained using ground measurements from 2384 stations for three different clear-sky and cloudy-sky conditions. The random sample validation results showed that the <span class=inline-formula><i>R</i><sup>2</sup></span> and root-mean-square error (RMSE) values of the three models ranged from 0.984 to 0.986 and from 1.342 to 1.440âK, respectively. We examined the spatiotemporal patterns and land cover type dependences of model accuracy. Two cross-validation (CV) strategies of leave-time-out (LTO) CV and leave-location-out (LLO) CV were also used to evaluate the models. Finally, we developed the all-sky <span class=inline-formula><i>T</i><sub>a</sub></span> dataset from 2003 to 2009 and compared it with the China Land Data Assimilation System (CLDAS) dataset at a 0.0625<span class=inline-formula><sup>â</sup></span> spatial resolution, the China Meteorological Forcing Data (CMFD) dataset at a 0.1<span class=inline-formula><sup>â</sup></span> spatial resolution, and the GLDAS dataset at a 0.25<span class=inline-formula><sup>â</sup></span> spatial resolution. Validation accuracy of our product in 2010 was significantly better than other datasets, with <span class=inline-formula><i>R</i><sup>2</sup></span> and RMSE values of 0.992 and 1.010âK, respectively. In summary, the developed all-sky daily mean land <span class=inline-formula><i>T</i><sub>a</sub></span> dataset has achieved satisfactory accuracy and high spatial resolution simultaneously, which fills the current dataset gap in this field and plays an important role in the studies of climate change and the hydrological cycle. This dataset is currently freely available at <a href=https://doi.org/10.5281/zenodo.4399453>https://doi.org/10.5281/zenodo.4399453</a> (Chen et al., 2021b) and the University of Maryland (<span class=uri>http://glass.umd.edu/Ta_China/</span>, last access: 24 August 2021). A sub-dataset that covers Beijing generated from this dataset is also publicly available at <a href=https://doi.org/10.5281/zenodo.4405123>https://doi.org/10.5281/zenodo.4405123</a> (Chen et al., 2021a)." @default.
- W3150269375 created "2021-04-13" @default.
- W3150269375 creator A5037458498 @default.
- W3150269375 date "2021-03-24" @default.
- W3150269375 modified "2023-10-03" @default.
- W3150269375 title "Reply on CC1" @default.
- W3150269375 doi "https://doi.org/10.5194/essd-2021-31-ac1" @default.
- W3150269375 hasPublicationYear "2021" @default.
- W3150269375 type Work @default.
- W3150269375 sameAs 3150269375 @default.
- W3150269375 citedByCount "0" @default.
- W3150269375 crossrefType "peer-review" @default.
- W3150269375 hasAuthorship W3150269375A5037458498 @default.
- W3150269375 hasBestOaLocation W31502693751 @default.
- W3150269375 hasConcept C105795698 @default.
- W3150269375 hasConcept C121332964 @default.
- W3150269375 hasConcept C127313418 @default.
- W3150269375 hasConcept C127413603 @default.
- W3150269375 hasConcept C1276947 @default.
- W3150269375 hasConcept C139945424 @default.
- W3150269375 hasConcept C147176958 @default.
- W3150269375 hasConcept C153294291 @default.
- W3150269375 hasConcept C18903297 @default.
- W3150269375 hasConcept C19269812 @default.
- W3150269375 hasConcept C197115733 @default.
- W3150269375 hasConcept C205649164 @default.
- W3150269375 hasConcept C24552861 @default.
- W3150269375 hasConcept C2777007095 @default.
- W3150269375 hasConcept C2778753569 @default.
- W3150269375 hasConcept C2780648208 @default.
- W3150269375 hasConcept C33923547 @default.
- W3150269375 hasConcept C39432304 @default.
- W3150269375 hasConcept C4792198 @default.
- W3150269375 hasConcept C49204034 @default.
- W3150269375 hasConcept C62649853 @default.
- W3150269375 hasConcept C73329638 @default.
- W3150269375 hasConcept C86803240 @default.
- W3150269375 hasConceptScore W3150269375C105795698 @default.
- W3150269375 hasConceptScore W3150269375C121332964 @default.
- W3150269375 hasConceptScore W3150269375C127313418 @default.
- W3150269375 hasConceptScore W3150269375C127413603 @default.
- W3150269375 hasConceptScore W3150269375C1276947 @default.
- W3150269375 hasConceptScore W3150269375C139945424 @default.
- W3150269375 hasConceptScore W3150269375C147176958 @default.
- W3150269375 hasConceptScore W3150269375C153294291 @default.
- W3150269375 hasConceptScore W3150269375C18903297 @default.
- W3150269375 hasConceptScore W3150269375C19269812 @default.
- W3150269375 hasConceptScore W3150269375C197115733 @default.
- W3150269375 hasConceptScore W3150269375C205649164 @default.
- W3150269375 hasConceptScore W3150269375C24552861 @default.
- W3150269375 hasConceptScore W3150269375C2777007095 @default.
- W3150269375 hasConceptScore W3150269375C2778753569 @default.
- W3150269375 hasConceptScore W3150269375C2780648208 @default.
- W3150269375 hasConceptScore W3150269375C33923547 @default.
- W3150269375 hasConceptScore W3150269375C39432304 @default.
- W3150269375 hasConceptScore W3150269375C4792198 @default.
- W3150269375 hasConceptScore W3150269375C49204034 @default.
- W3150269375 hasConceptScore W3150269375C62649853 @default.
- W3150269375 hasConceptScore W3150269375C73329638 @default.
- W3150269375 hasConceptScore W3150269375C86803240 @default.
- W3150269375 hasLocation W31502693751 @default.
- W3150269375 hasOpenAccess W3150269375 @default.
- W3150269375 hasPrimaryLocation W31502693751 @default.
- W3150269375 hasRelatedWork W1975591846 @default.
- W3150269375 hasRelatedWork W2047228190 @default.
- W3150269375 hasRelatedWork W2104916740 @default.
- W3150269375 hasRelatedWork W2132548385 @default.
- W3150269375 hasRelatedWork W2141857671 @default.
- W3150269375 hasRelatedWork W2380921289 @default.
- W3150269375 hasRelatedWork W3149377653 @default.
- W3150269375 hasRelatedWork W4213433758 @default.
- W3150269375 hasRelatedWork W1609312116 @default.
- W3150269375 hasRelatedWork W2094817711 @default.
- W3150269375 isParatext "false" @default.
- W3150269375 isRetracted "false" @default.
- W3150269375 magId "3150269375" @default.
- W3150269375 workType "peer-review" @default.