Matches in SemOpenAlex for { <https://semopenalex.org/work/W3150285938> ?p ?o ?g. }
- W3150285938 endingPage "7663" @default.
- W3150285938 startingPage "7653" @default.
- W3150285938 abstract "To develop a fully automated full-thickness cartilage segmentation and mapping of T1, T1ρ, and T2*, as well as macromolecular fraction (MMF) by combining a series of quantitative 3D ultrashort echo time (UTE) cones MR imaging with a transfer learning-based U-Net convolutional neural networks (CNN) model.Sixty-five participants (20 normal, 29 doubtful-minimal osteoarthritis (OA), and 16 moderate-severe OA) were scanned using 3D UTE cones T1 (Cones-T1), adiabatic T1ρ (Cones-AdiabT1ρ), T2* (Cones-T2*), and magnetization transfer (Cones-MT) sequences at 3 T. Manual segmentation was performed by two experienced radiologists, and automatic segmentation was completed using the proposed U-Net CNN model. The accuracy of cartilage segmentation was evaluated using the Dice score and volumetric overlap error (VOE). Pearson correlation coefficient and intraclass correlation coefficient (ICC) were calculated to evaluate the consistency of quantitative MR parameters extracted from automatic and manual segmentations. UTE biomarkers were compared among different subject groups using one-way ANOVA.The U-Net CNN model provided reliable cartilage segmentation with a mean Dice score of 0.82 and a mean VOE of 29.86%. The consistency of Cones-T1, Cones-AdiabT1ρ, Cones-T2*, and MMF calculated using automatic and manual segmentations ranged from 0.91 to 0.99 for Pearson correlation coefficients, and from 0.91 to 0.96 for ICCs, respectively. Significant increases in Cones-T1, Cones-AdiabT1ρ, and Cones-T2* (p < 0.05) and a decrease in MMF (p < 0.001) were observed in doubtful-minimal OA and/or moderate-severe OA over normal controls.Quantitative 3D UTE cones MR imaging combined with the proposed U-Net CNN model allows a fully automated comprehensive assessment of articular cartilage.• 3D UTE cones imaging combined with U-Net CNN model was able to provide fully automated cartilage segmentation. • UTE parameters obtained from automatic segmentation were able to reliably provide a quantitative assessment of cartilage." @default.
- W3150285938 created "2021-04-13" @default.
- W3150285938 creator A5001789036 @default.
- W3150285938 creator A5007505621 @default.
- W3150285938 creator A5057316665 @default.
- W3150285938 creator A5062544014 @default.
- W3150285938 creator A5068144789 @default.
- W3150285938 creator A5075035815 @default.
- W3150285938 creator A5077991508 @default.
- W3150285938 creator A5084262755 @default.
- W3150285938 date "2021-03-30" @default.
- W3150285938 modified "2023-09-26" @default.
- W3150285938 title "Automated cartilage segmentation and quantification using 3D ultrashort echo time (UTE) cones MR imaging with deep convolutional neural networks" @default.
- W3150285938 cites W1820184392 @default.
- W3150285938 cites W1835090478 @default.
- W3150285938 cites W1965665343 @default.
- W3150285938 cites W1972612668 @default.
- W3150285938 cites W1977454198 @default.
- W3150285938 cites W1980837653 @default.
- W3150285938 cites W1993117474 @default.
- W3150285938 cites W2002999171 @default.
- W3150285938 cites W2031144025 @default.
- W3150285938 cites W2032407864 @default.
- W3150285938 cites W2079584350 @default.
- W3150285938 cites W2086168607 @default.
- W3150285938 cites W2088496721 @default.
- W3150285938 cites W2108598243 @default.
- W3150285938 cites W2118644005 @default.
- W3150285938 cites W2120871209 @default.
- W3150285938 cites W2133287637 @default.
- W3150285938 cites W2144387765 @default.
- W3150285938 cites W2157929110 @default.
- W3150285938 cites W2160815625 @default.
- W3150285938 cites W2162673520 @default.
- W3150285938 cites W2513644696 @default.
- W3150285938 cites W2584355440 @default.
- W3150285938 cites W2610485069 @default.
- W3150285938 cites W2734349601 @default.
- W3150285938 cites W2737373222 @default.
- W3150285938 cites W2793063963 @default.
- W3150285938 cites W2794990008 @default.
- W3150285938 cites W2803328900 @default.
- W3150285938 cites W2807444515 @default.
- W3150285938 cites W2887544363 @default.
- W3150285938 cites W2888358068 @default.
- W3150285938 cites W2901700216 @default.
- W3150285938 cites W2904369333 @default.
- W3150285938 cites W2906785117 @default.
- W3150285938 cites W2917927814 @default.
- W3150285938 cites W2919115771 @default.
- W3150285938 cites W2951595759 @default.
- W3150285938 cites W2974088513 @default.
- W3150285938 cites W2986366770 @default.
- W3150285938 cites W3025458200 @default.
- W3150285938 doi "https://doi.org/10.1007/s00330-021-07853-6" @default.
- W3150285938 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33783571" @default.
- W3150285938 hasPublicationYear "2021" @default.
- W3150285938 type Work @default.
- W3150285938 sameAs 3150285938 @default.
- W3150285938 citedByCount "10" @default.
- W3150285938 countsByYear W31502859382021 @default.
- W3150285938 countsByYear W31502859382022 @default.
- W3150285938 countsByYear W31502859382023 @default.
- W3150285938 crossrefType "journal-article" @default.
- W3150285938 hasAuthorship W3150285938A5001789036 @default.
- W3150285938 hasAuthorship W3150285938A5007505621 @default.
- W3150285938 hasAuthorship W3150285938A5057316665 @default.
- W3150285938 hasAuthorship W3150285938A5062544014 @default.
- W3150285938 hasAuthorship W3150285938A5068144789 @default.
- W3150285938 hasAuthorship W3150285938A5075035815 @default.
- W3150285938 hasAuthorship W3150285938A5077991508 @default.
- W3150285938 hasAuthorship W3150285938A5084262755 @default.
- W3150285938 hasBestOaLocation W31502859382 @default.
- W3150285938 hasConcept C104709138 @default.
- W3150285938 hasConcept C105702510 @default.
- W3150285938 hasConcept C105795698 @default.
- W3150285938 hasConcept C124504099 @default.
- W3150285938 hasConcept C153180895 @default.
- W3150285938 hasConcept C154945302 @default.
- W3150285938 hasConcept C163892561 @default.
- W3150285938 hasConcept C171606756 @default.
- W3150285938 hasConcept C2780550940 @default.
- W3150285938 hasConcept C2989005 @default.
- W3150285938 hasConcept C33923547 @default.
- W3150285938 hasConcept C41008148 @default.
- W3150285938 hasConcept C55078378 @default.
- W3150285938 hasConcept C70410870 @default.
- W3150285938 hasConcept C71924100 @default.
- W3150285938 hasConcept C81363708 @default.
- W3150285938 hasConcept C89600930 @default.
- W3150285938 hasConceptScore W3150285938C104709138 @default.
- W3150285938 hasConceptScore W3150285938C105702510 @default.
- W3150285938 hasConceptScore W3150285938C105795698 @default.
- W3150285938 hasConceptScore W3150285938C124504099 @default.
- W3150285938 hasConceptScore W3150285938C153180895 @default.
- W3150285938 hasConceptScore W3150285938C154945302 @default.
- W3150285938 hasConceptScore W3150285938C163892561 @default.
- W3150285938 hasConceptScore W3150285938C171606756 @default.