Matches in SemOpenAlex for { <https://semopenalex.org/work/W3150302189> ?p ?o ?g. }
- W3150302189 endingPage "5414" @default.
- W3150302189 startingPage "5393" @default.
- W3150302189 abstract "Abstract. Several ambient air quality records corroborate the severe and persistent degradation of air quality over northern India during the winter months, with evidence of a continued, increasing trend of pollution across the Indo-Gangetic Plain (IGP) over the past decade. A combination of atmospheric dynamics and uncertain emissions, including the post-monsoon agricultural stubble burning, make it challenging to resolve the role of each individual factor. Here we demonstrate the potential use of an atmospheric transport model, the Weather Research and Forecasting model coupled with chemistry (WRF–Chem) to identify and quantify the role of transport mechanisms and emissions on the occurrence of the pollution events. The investigation is based on the use of carbon monoxide (CO) observations from the TROPOspheric Monitoring Instrument (TROPOMI) on board the Sentinel-5 Precursor satellite and the surface measurement network, as well as the WRF–Chem simulations, to investigate the factors contributing to CO enhancement over India during November 2018. We show that the simulated column-averaged dry air mole fraction (XCO) is largely consistent with TROPOMI observations, with a spatial correlation coefficient of 0.87. The surface-level CO concentrations show larger sensitivities to boundary layer dynamics, wind speed, and diverging source regions, leading to a complex concentration pattern and reducing the observation-model agreement with a correlation coefficient ranging from 0.41 to 0.60 for measurement locations across the IGP. We find that daily satellite observations can provide a first-order inference of the CO transport pathways during the enhanced burning period, and this transport pattern is reproduced well in the model. By using the observations and employing the model at a comparable resolution, we confirm the significant role of atmospheric dynamics and residential, industrial, and commercial emissions in the production of the exorbitant level of air pollutants in northern India. We find that biomass burning plays only a minimal role in both column and surface enhancements of CO, except for the state of Punjab during the high pollution episodes. While the model reproduces observations reasonably well, a better understanding of the factors controlling the model uncertainties is essential for relating the observed concentrations to the underlying emissions. Overall, our study emphasizes the importance of undertaking rigorous policy measures, mainly focusing on reducing residential, commercial, and industrial emissions in addition to actions already underway in the agricultural sectors." @default.
- W3150302189 created "2021-04-13" @default.
- W3150302189 creator A5005729373 @default.
- W3150302189 creator A5040937059 @default.
- W3150302189 creator A5047198859 @default.
- W3150302189 creator A5050256589 @default.
- W3150302189 creator A5069164442 @default.
- W3150302189 creator A5081097348 @default.
- W3150302189 creator A5085727024 @default.
- W3150302189 date "2021-04-08" @default.
- W3150302189 modified "2023-10-14" @default.
- W3150302189 title "Using TROPOspheric Monitoring Instrument (TROPOMI) measurements and Weather Research and Forecasting (WRF) CO modelling to understand the contribution of meteorology and emissions to an extreme air pollution event in India" @default.
- W3150302189 cites W1706437780 @default.
- W3150302189 cites W1960909689 @default.
- W3150302189 cites W1977945389 @default.
- W3150302189 cites W1998589277 @default.
- W3150302189 cites W2002570697 @default.
- W3150302189 cites W2020091657 @default.
- W3150302189 cites W2020797404 @default.
- W3150302189 cites W2022937528 @default.
- W3150302189 cites W2036788393 @default.
- W3150302189 cites W2044499383 @default.
- W3150302189 cites W2047565652 @default.
- W3150302189 cites W2053122553 @default.
- W3150302189 cites W2065253738 @default.
- W3150302189 cites W2073960842 @default.
- W3150302189 cites W2101490987 @default.
- W3150302189 cites W2110465139 @default.
- W3150302189 cites W2131491776 @default.
- W3150302189 cites W2138176197 @default.
- W3150302189 cites W2144304061 @default.
- W3150302189 cites W2146106712 @default.
- W3150302189 cites W2155039075 @default.
- W3150302189 cites W2160909068 @default.
- W3150302189 cites W2164231461 @default.
- W3150302189 cites W2278813533 @default.
- W3150302189 cites W2399670656 @default.
- W3150302189 cites W2412692005 @default.
- W3150302189 cites W2573821892 @default.
- W3150302189 cites W2611772571 @default.
- W3150302189 cites W2734270742 @default.
- W3150302189 cites W2773957561 @default.
- W3150302189 cites W2791116841 @default.
- W3150302189 cites W2793614115 @default.
- W3150302189 cites W2804571805 @default.
- W3150302189 cites W2886151619 @default.
- W3150302189 cites W2900702976 @default.
- W3150302189 cites W2911774788 @default.
- W3150302189 cites W2913966439 @default.
- W3150302189 cites W2935360109 @default.
- W3150302189 cites W2950888176 @default.
- W3150302189 cites W2958399835 @default.
- W3150302189 cites W3010669989 @default.
- W3150302189 cites W3039690069 @default.
- W3150302189 cites W3049051440 @default.
- W3150302189 cites W3085552878 @default.
- W3150302189 cites W3087138366 @default.
- W3150302189 cites W4365786812 @default.
- W3150302189 doi "https://doi.org/10.5194/acp-21-5393-2021" @default.
- W3150302189 hasPublicationYear "2021" @default.
- W3150302189 type Work @default.
- W3150302189 sameAs 3150302189 @default.
- W3150302189 citedByCount "8" @default.
- W3150302189 countsByYear W31503021892021 @default.
- W3150302189 countsByYear W31503021892022 @default.
- W3150302189 countsByYear W31503021892023 @default.
- W3150302189 crossrefType "journal-article" @default.
- W3150302189 hasAuthorship W3150302189A5005729373 @default.
- W3150302189 hasAuthorship W3150302189A5040937059 @default.
- W3150302189 hasAuthorship W3150302189A5047198859 @default.
- W3150302189 hasAuthorship W3150302189A5050256589 @default.
- W3150302189 hasAuthorship W3150302189A5069164442 @default.
- W3150302189 hasAuthorship W3150302189A5081097348 @default.
- W3150302189 hasAuthorship W3150302189A5085727024 @default.
- W3150302189 hasBestOaLocation W31503021891 @default.
- W3150302189 hasConcept C105795698 @default.
- W3150302189 hasConcept C126314574 @default.
- W3150302189 hasConcept C127313418 @default.
- W3150302189 hasConcept C127413603 @default.
- W3150302189 hasConcept C133204551 @default.
- W3150302189 hasConcept C146978453 @default.
- W3150302189 hasConcept C153294291 @default.
- W3150302189 hasConcept C161067210 @default.
- W3150302189 hasConcept C178790620 @default.
- W3150302189 hasConcept C185592680 @default.
- W3150302189 hasConcept C18903297 @default.
- W3150302189 hasConcept C19269812 @default.
- W3150302189 hasConcept C205649164 @default.
- W3150302189 hasConcept C2780092901 @default.
- W3150302189 hasConcept C33923547 @default.
- W3150302189 hasConcept C39432304 @default.
- W3150302189 hasConcept C49204034 @default.
- W3150302189 hasConcept C521259446 @default.
- W3150302189 hasConcept C559116025 @default.
- W3150302189 hasConcept C86803240 @default.
- W3150302189 hasConcept C9075549 @default.
- W3150302189 hasConcept C91586092 @default.
- W3150302189 hasConceptScore W3150302189C105795698 @default.