Matches in SemOpenAlex for { <https://semopenalex.org/work/W3150304897> ?p ?o ?g. }
- W3150304897 endingPage "100736" @default.
- W3150304897 startingPage "100736" @default.
- W3150304897 abstract "Metal-organic frameworks (MOFs) with high conductivity have proven to be an exciting electrode material for energy storage devices. However, most of the MOFs exhibit a low electrical conductivity, which limits their use in supercapacitors. To overcome this issue herein, a simple acid treatment method was adopted to obtain nanoflower-like nickel 2-methylimidazole framework (Ni-MOF) to improve the electrical conductivity without disrupting its framework. The sample treated with a solution of sulfuric acid (H2SO4) at optimal pH 2 (Ni-MOF-2), exhibited improved surface texture with excellent electrochemical characteristics. The Ni-MOF-2 sample displayed a high specific capacity (Cs) of 467 C/g at 1 A/g in aqueous 6 M potassium hydroxide (KOH) electrolyte than that of other samples. This is mainly due to enhanced proton conduction in Ni-MOF-2 after acid treatment. In addition, a hybrid supercapacitor (HSC) device was fabricated using battery-type Ni-MOF-2 as a positive electrode and heteroatom-enriched activated carbon (O, N, [email protected]) as a negative electrode. The fabricated HSC exhibited a maximum specific capacity (Cs) of 38 mAh/g with high specific energy (Es) 39 Wh/kg and maximum specific power (Ps) of 11,079 W/kg. Moreover, the HSC displayed excellent cyclic stability of ~87% for 10,000 continuous galvanostatic charge/discharge (GCD) cycles." @default.
- W3150304897 created "2021-04-13" @default.
- W3150304897 creator A5001857916 @default.
- W3150304897 creator A5020006104 @default.
- W3150304897 creator A5029038344 @default.
- W3150304897 creator A5032245114 @default.
- W3150304897 creator A5055965727 @default.
- W3150304897 creator A5074493142 @default.
- W3150304897 date "2021-09-01" @default.
- W3150304897 modified "2023-10-17" @default.
- W3150304897 title "Protonated nickel 2-methylimidazole framework as an advanced electrode material for high-performance hybrid supercapacitor" @default.
- W3150304897 cites W1518991754 @default.
- W3150304897 cites W1617936729 @default.
- W3150304897 cites W1796093284 @default.
- W3150304897 cites W1946712496 @default.
- W3150304897 cites W1968029957 @default.
- W3150304897 cites W2017751495 @default.
- W3150304897 cites W2024775010 @default.
- W3150304897 cites W2039263184 @default.
- W3150304897 cites W2047455253 @default.
- W3150304897 cites W2051585572 @default.
- W3150304897 cites W2070124501 @default.
- W3150304897 cites W2076839890 @default.
- W3150304897 cites W2078184681 @default.
- W3150304897 cites W2080083364 @default.
- W3150304897 cites W2142210690 @default.
- W3150304897 cites W2162677524 @default.
- W3150304897 cites W2229610848 @default.
- W3150304897 cites W2316441214 @default.
- W3150304897 cites W2326893181 @default.
- W3150304897 cites W2346349013 @default.
- W3150304897 cites W2487401809 @default.
- W3150304897 cites W2504054438 @default.
- W3150304897 cites W2510604673 @default.
- W3150304897 cites W2517213317 @default.
- W3150304897 cites W2528092463 @default.
- W3150304897 cites W2591468107 @default.
- W3150304897 cites W2592965320 @default.
- W3150304897 cites W2613308849 @default.
- W3150304897 cites W2614901328 @default.
- W3150304897 cites W2653895590 @default.
- W3150304897 cites W2734845984 @default.
- W3150304897 cites W2758351518 @default.
- W3150304897 cites W2759535314 @default.
- W3150304897 cites W2763256094 @default.
- W3150304897 cites W2763784835 @default.
- W3150304897 cites W2767279526 @default.
- W3150304897 cites W2775193740 @default.
- W3150304897 cites W2783556558 @default.
- W3150304897 cites W2784071028 @default.
- W3150304897 cites W2784506103 @default.
- W3150304897 cites W2789635950 @default.
- W3150304897 cites W2790170300 @default.
- W3150304897 cites W2795682356 @default.
- W3150304897 cites W2804339073 @default.
- W3150304897 cites W2885167492 @default.
- W3150304897 cites W2886701884 @default.
- W3150304897 cites W2896122569 @default.
- W3150304897 cites W2897700881 @default.
- W3150304897 cites W2917921311 @default.
- W3150304897 cites W2950697060 @default.
- W3150304897 cites W2964142053 @default.
- W3150304897 cites W2967155611 @default.
- W3150304897 cites W2969684275 @default.
- W3150304897 cites W2972103642 @default.
- W3150304897 cites W2974213855 @default.
- W3150304897 cites W2979793724 @default.
- W3150304897 cites W2980867855 @default.
- W3150304897 cites W2981065290 @default.
- W3150304897 cites W2984474208 @default.
- W3150304897 cites W2989797466 @default.
- W3150304897 cites W3003720732 @default.
- W3150304897 cites W3004787932 @default.
- W3150304897 cites W3031512767 @default.
- W3150304897 cites W3049353509 @default.
- W3150304897 doi "https://doi.org/10.1016/j.mtener.2021.100736" @default.
- W3150304897 hasPublicationYear "2021" @default.
- W3150304897 type Work @default.
- W3150304897 sameAs 3150304897 @default.
- W3150304897 citedByCount "13" @default.
- W3150304897 countsByYear W31503048972021 @default.
- W3150304897 countsByYear W31503048972022 @default.
- W3150304897 countsByYear W31503048972023 @default.
- W3150304897 crossrefType "journal-article" @default.
- W3150304897 hasAuthorship W3150304897A5001857916 @default.
- W3150304897 hasAuthorship W3150304897A5020006104 @default.
- W3150304897 hasAuthorship W3150304897A5029038344 @default.
- W3150304897 hasAuthorship W3150304897A5032245114 @default.
- W3150304897 hasAuthorship W3150304897A5055965727 @default.
- W3150304897 hasAuthorship W3150304897A5074493142 @default.
- W3150304897 hasConcept C127413603 @default.
- W3150304897 hasConcept C131540310 @default.
- W3150304897 hasConcept C147789679 @default.
- W3150304897 hasConcept C17525397 @default.
- W3150304897 hasConcept C178790620 @default.
- W3150304897 hasConcept C179104552 @default.
- W3150304897 hasConcept C185592680 @default.
- W3150304897 hasConcept C191897082 @default.