Matches in SemOpenAlex for { <https://semopenalex.org/work/W3150357110> ?p ?o ?g. }
- W3150357110 endingPage "736735" @default.
- W3150357110 startingPage "736735" @default.
- W3150357110 abstract "Antibiotics are used in aquaculture to maintain the health and welfare of stocks; however, the emergence and selection of antibiotic resistance in bacteria poses threats to humans, animals and the environment. Mitigation of antibiotic resistance relies on understanding the flow of antibiotics, residues, resistant bacteria and resistance genes through interconnecting systems, so that potential solutions can be identified and issues around their implementation evaluated. Participatory systems-thinking can capture the deep complexity of a system while integrating stakeholder perspectives. In this present study, such an approach was applied to Nile tilapia (Oreochromis niloticus) production in the Nile Delta of Egypt, where disease events caused by antibiotic-resistant pathogens have been reported. A system map was co-produced with aquaculture stakeholders at a workshop in May 2018 and used to identify hotspots of antibiotic use, exposure and fate and to describe approaches that would promote fish health and thus reduce antibiotic use. Antibiotics are introduced into the aquaculture system via direct application for example in medicated feed, but residues may also be introduced into the system through agricultural drainage water, which is the primary source of water for most fish farms in Egypt. A follow-up survey of stakeholders assessed the perceived feasibility, advantages and disadvantages of potential interventions. Interventions that respondents felt could be implemented in the short-term to reduce antibiotic usage effectively included: more frequent water exchanges, regular monitoring of culture water quality parameters, improved storage conditions for feed, use of probiotics and greater access to farmer and service providers training programmes. Other potential interventions included greater access to suitable and rapid diagnostics, high quality feeds, improved biosecurity measures and genetically-improved fish, but these solutions were expected to be achieved as long-term goals, with cost being of one of the noted barriers to implementation. Identifying feasible and sustainable interventions that can be taken to reduce antibiotic use, and understanding implementation barriers, are important for addressing antibiotic resistance and ensuring the continued efficacy of antibiotics. This is vital to ensuring the productivity of the tilapia sector in Egypt. The approach taken in the present study provides a means to identify points in the system where the effectiveness of interventions can be evaluated and thus it may be applied to other food production systems to combat the problem of antibiotic resistance." @default.
- W3150357110 created "2021-04-13" @default.
- W3150357110 creator A5001115068 @default.
- W3150357110 creator A5011545754 @default.
- W3150357110 creator A5019910008 @default.
- W3150357110 creator A5024502203 @default.
- W3150357110 creator A5027797386 @default.
- W3150357110 creator A5028269577 @default.
- W3150357110 creator A5029250804 @default.
- W3150357110 creator A5056592834 @default.
- W3150357110 creator A5063264316 @default.
- W3150357110 creator A5084912065 @default.
- W3150357110 creator A5086517840 @default.
- W3150357110 date "2021-07-01" @default.
- W3150357110 modified "2023-10-15" @default.
- W3150357110 title "Systems-thinking approach to identify and assess feasibility of potential interventions to reduce antibiotic use in tilapia farming in Egypt" @default.
- W3150357110 cites W1593881160 @default.
- W3150357110 cites W1673255459 @default.
- W3150357110 cites W1967845489 @default.
- W3150357110 cites W1999051665 @default.
- W3150357110 cites W2005593121 @default.
- W3150357110 cites W2013183501 @default.
- W3150357110 cites W2034185543 @default.
- W3150357110 cites W2038557074 @default.
- W3150357110 cites W2101521516 @default.
- W3150357110 cites W2113267488 @default.
- W3150357110 cites W2121336765 @default.
- W3150357110 cites W2122951513 @default.
- W3150357110 cites W2135696075 @default.
- W3150357110 cites W2137208582 @default.
- W3150357110 cites W2146738409 @default.
- W3150357110 cites W2151999777 @default.
- W3150357110 cites W2170023919 @default.
- W3150357110 cites W2295916537 @default.
- W3150357110 cites W2326377019 @default.
- W3150357110 cites W2342145395 @default.
- W3150357110 cites W2398776425 @default.
- W3150357110 cites W2466644479 @default.
- W3150357110 cites W2498603190 @default.
- W3150357110 cites W2511100645 @default.
- W3150357110 cites W2515985846 @default.
- W3150357110 cites W2519745949 @default.
- W3150357110 cites W2528917315 @default.
- W3150357110 cites W2547878662 @default.
- W3150357110 cites W2570239949 @default.
- W3150357110 cites W2578718150 @default.
- W3150357110 cites W2583927791 @default.
- W3150357110 cites W2620976278 @default.
- W3150357110 cites W2768352750 @default.
- W3150357110 cites W2769061374 @default.
- W3150357110 cites W2791205691 @default.
- W3150357110 cites W2792137248 @default.
- W3150357110 cites W2802423396 @default.
- W3150357110 cites W2805668865 @default.
- W3150357110 cites W2899956321 @default.
- W3150357110 cites W2936672112 @default.
- W3150357110 cites W2940558874 @default.
- W3150357110 cites W2951411873 @default.
- W3150357110 cites W2953303576 @default.
- W3150357110 cites W2953794648 @default.
- W3150357110 cites W2968648504 @default.
- W3150357110 cites W2995038017 @default.
- W3150357110 cites W3004726301 @default.
- W3150357110 cites W3010676252 @default.
- W3150357110 cites W3024889666 @default.
- W3150357110 cites W3049095549 @default.
- W3150357110 cites W3081381033 @default.
- W3150357110 doi "https://doi.org/10.1016/j.aquaculture.2021.736735" @default.
- W3150357110 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8164158" @default.
- W3150357110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34276104" @default.
- W3150357110 hasPublicationYear "2021" @default.
- W3150357110 type Work @default.
- W3150357110 sameAs 3150357110 @default.
- W3150357110 citedByCount "10" @default.
- W3150357110 countsByYear W31503571102021 @default.
- W3150357110 countsByYear W31503571102022 @default.
- W3150357110 countsByYear W31503571102023 @default.
- W3150357110 crossrefType "journal-article" @default.
- W3150357110 hasAuthorship W3150357110A5001115068 @default.
- W3150357110 hasAuthorship W3150357110A5011545754 @default.
- W3150357110 hasAuthorship W3150357110A5019910008 @default.
- W3150357110 hasAuthorship W3150357110A5024502203 @default.
- W3150357110 hasAuthorship W3150357110A5027797386 @default.
- W3150357110 hasAuthorship W3150357110A5028269577 @default.
- W3150357110 hasAuthorship W3150357110A5029250804 @default.
- W3150357110 hasAuthorship W3150357110A5056592834 @default.
- W3150357110 hasAuthorship W3150357110A5063264316 @default.
- W3150357110 hasAuthorship W3150357110A5084912065 @default.
- W3150357110 hasAuthorship W3150357110A5086517840 @default.
- W3150357110 hasBestOaLocation W31503571101 @default.
- W3150357110 hasConcept C107826830 @default.
- W3150357110 hasConcept C112964050 @default.
- W3150357110 hasConcept C118518473 @default.
- W3150357110 hasConcept C141896089 @default.
- W3150357110 hasConcept C150903083 @default.
- W3150357110 hasConcept C159110408 @default.
- W3150357110 hasConcept C18903297 @default.
- W3150357110 hasConcept C27415008 @default.