Matches in SemOpenAlex for { <https://semopenalex.org/work/W3150410488> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3150410488 endingPage "113702" @default.
- W3150410488 startingPage "113702" @default.
- W3150410488 abstract "Multiple bifurcation (MB) is a compound stability problem of nonlinear structures, in which the singular system stiffness matrix at the stability point coincidentally undergoes two or more zero eigenvalues. The corresponding critical eigenvectors are generally coupled in the actual buckling modes, as frequently observed in symmetric structures. This paper presents a practical diagnosis to visualize all secondary paths branching from the compound stability point when the stiffness matrix is deficient in rank by two. To find post-critical equilibria around an MB point (MBP), asymptotic expansions are assumed to consist of two homogeneous and one particular solution of the singular stiffness equations. Furthermore, hyper-dual numbers are introduced to numerically evaluate the derivatives of the system stiffness with respect to the nodal degrees-of-freedom. The resulting bifurcation equations are a set of three simultaneous cubic polynomial equations with unknown perturbation parameters that can be solved by a popular graphical software. The number and location of existing equilibria above and beneath the MBP at the load level can exactly indicate each type of branching path, such as asymmetric, unstable, or stable symmetric bifurcation paths. Two numerical examples demonstrate that the proposed asymptotic theory can reliably diagnose MB. The first one is the Augusti model, i.e., a simple rigid column supported by elastic springs that shows that the numerical prediction by the proposed method is consistent with Augusti’s analytical results. The second example was computed using the plate and shell finite element (FE) program to verify that the asymptotically expanded and visually solved bifurcation equations work well and can be implemented in existing FE codes for stability analysis, including imperfection-sensitivity and optimization." @default.
- W3150410488 created "2021-04-13" @default.
- W3150410488 creator A5050253459 @default.
- W3150410488 creator A5071689458 @default.
- W3150410488 date "2021-08-01" @default.
- W3150410488 modified "2023-10-18" @default.
- W3150410488 title "Multiple bifurcation paths visualized by a computational asymptotic stability theory" @default.
- W3150410488 cites W1971365678 @default.
- W3150410488 cites W1988010545 @default.
- W3150410488 cites W2000842059 @default.
- W3150410488 cites W2003297364 @default.
- W3150410488 cites W2012978186 @default.
- W3150410488 cites W2022133655 @default.
- W3150410488 cites W2022682646 @default.
- W3150410488 cites W2027435828 @default.
- W3150410488 cites W2030787165 @default.
- W3150410488 cites W2031980956 @default.
- W3150410488 cites W2034301415 @default.
- W3150410488 cites W2042391296 @default.
- W3150410488 cites W2051166715 @default.
- W3150410488 cites W2054063555 @default.
- W3150410488 cites W2068391831 @default.
- W3150410488 cites W2069770065 @default.
- W3150410488 cites W2075210656 @default.
- W3150410488 cites W2088394873 @default.
- W3150410488 cites W2138395440 @default.
- W3150410488 cites W2169561928 @default.
- W3150410488 cites W2291410443 @default.
- W3150410488 cites W2300899990 @default.
- W3150410488 cites W2739687683 @default.
- W3150410488 cites W3003851191 @default.
- W3150410488 doi "https://doi.org/10.1016/j.cma.2021.113702" @default.
- W3150410488 hasPublicationYear "2021" @default.
- W3150410488 type Work @default.
- W3150410488 sameAs 3150410488 @default.
- W3150410488 citedByCount "3" @default.
- W3150410488 countsByYear W31504104882022 @default.
- W3150410488 countsByYear W31504104882023 @default.
- W3150410488 crossrefType "journal-article" @default.
- W3150410488 hasAuthorship W3150410488A5050253459 @default.
- W3150410488 hasAuthorship W3150410488A5071689458 @default.
- W3150410488 hasConcept C121332964 @default.
- W3150410488 hasConcept C134306372 @default.
- W3150410488 hasConcept C14198674 @default.
- W3150410488 hasConcept C158622935 @default.
- W3150410488 hasConcept C158693339 @default.
- W3150410488 hasConcept C2779372316 @default.
- W3150410488 hasConcept C2781349735 @default.
- W3150410488 hasConcept C33923547 @default.
- W3150410488 hasConcept C62520636 @default.
- W3150410488 hasConcept C85075877 @default.
- W3150410488 hasConcept C97355855 @default.
- W3150410488 hasConceptScore W3150410488C121332964 @default.
- W3150410488 hasConceptScore W3150410488C134306372 @default.
- W3150410488 hasConceptScore W3150410488C14198674 @default.
- W3150410488 hasConceptScore W3150410488C158622935 @default.
- W3150410488 hasConceptScore W3150410488C158693339 @default.
- W3150410488 hasConceptScore W3150410488C2779372316 @default.
- W3150410488 hasConceptScore W3150410488C2781349735 @default.
- W3150410488 hasConceptScore W3150410488C33923547 @default.
- W3150410488 hasConceptScore W3150410488C62520636 @default.
- W3150410488 hasConceptScore W3150410488C85075877 @default.
- W3150410488 hasConceptScore W3150410488C97355855 @default.
- W3150410488 hasLocation W31504104881 @default.
- W3150410488 hasOpenAccess W3150410488 @default.
- W3150410488 hasPrimaryLocation W31504104881 @default.
- W3150410488 hasRelatedWork W1977186965 @default.
- W3150410488 hasRelatedWork W1985407884 @default.
- W3150410488 hasRelatedWork W2068526439 @default.
- W3150410488 hasRelatedWork W2070969328 @default.
- W3150410488 hasRelatedWork W2103804668 @default.
- W3150410488 hasRelatedWork W2114933532 @default.
- W3150410488 hasRelatedWork W2409927300 @default.
- W3150410488 hasRelatedWork W3042324601 @default.
- W3150410488 hasRelatedWork W402889942 @default.
- W3150410488 hasRelatedWork W176012604 @default.
- W3150410488 hasVolume "381" @default.
- W3150410488 isParatext "false" @default.
- W3150410488 isRetracted "false" @default.
- W3150410488 magId "3150410488" @default.
- W3150410488 workType "article" @default.