Matches in SemOpenAlex for { <https://semopenalex.org/work/W3150430274> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3150430274 abstract "This note describes a function written in APL/360 that computes an analysis of variance table for many kinds of experimental designs (excluding those with unequal n or missing observations). The only argument required by the function is the name of the array containing the data to be analyzed. No declaration of type of design whatsoever is needed. Instead, the Subjects factor is included a dimension of the data array, an approach described by Lindman (1974, p. 189) treating Error (subjects a source of variability) as a random factor nested in all factors in the design. Beyond this, the function also treats all data arrays if they were fully crossed designs, with n = 1. In these respects, the function is similar to a FORTRAN routine written by Ogilvie (Note 1), and is also a generalization of computational methods described by Clifford (1968). As an example of the use of this function, consider a classification with factors A (two levels), B (three levels), and Subjects (four). The data are assigned to X, a 2.by 3 by 4 array (see Figure 1). A call to the function (APLAOV X) produces a table of sums of squares, degrees of freedom, and mean squares for the following effects: A, B, AB, S, AS, BS, ABS. The function automatically assigns the letters A, If, c, ... , to the first, second, third, ... , dimension of the data array, with the letter assigned to the last dimension. (The data array must be structured so that Subjects is the last dimension.) Denominators of F ratios would be formed from the last four terms by the user. If, for instance, the design was completely randomized (four subjects in each of the six cells), addition of the last four sums of squares, and division by the sum of their degreesof freedom, would produce the usual mean square within cells (assuming fixed effects for A and B). If factor A was between subjects and factor B within subjects, combining the S and AS terms would give the error for testing A, while the BS term alone would be the error for B, etc. In this latter case, the four levels of the Subjects factor would refer to the number of subjects in each level of A, or to the total number of subjects if the designwas entirely repeated measures,with N =4. The function would also produce the necessary sums of squares if the design was hierarchical, if, for instance, factor B was groups nested under A, with four subjects in each nested group. In this case, the sums,of squares for the nested factor would be gotten from A and AB. The procedure generalizes to designs with any number of bases of classification, effectively limited only by workspace size. (Arrays up to rank 63 can be defined in APL.) At the cost of requiring the user to form error terms and perform the final F tests, the function achieves considerable generality and ease of use, due largely to the array definition and manipulation capabilities of APL. It has also proven quite useful didactically. Large ANOVA programs that produce not only F ratios, but p values well, may not be entirely desirable in a first course analysis of variance, where the student might profit more from having to examine sources of variability in performing F tests. v IPUOV I I I J V-( (pS I.'C£ I pS-O-( 1.-12. ('C£-pH-pl ))-1100 01 rp-'CU'AlCUO' 13J rpl.c£J-'S' 10J .-1 Bl :~I I. J C,-(tv -0I ptv-tar-(leU2) TI-I.I 17] OIJ J-I·rIJ-I.1: J-IV IIJ c-,o.o IIJ .«pc,.rplc,lI'OIISQ llOl rC:O-./I (VI,c,ICJI-«C·C.1 )-1) 1 D (11 J ·(cc pC, IIfC 1I2 J SQ,sIJl.(.1 ( ('1 (pOI )pD).2)' ('I£vIC,JI 113J ,O.'D.SIIJ'I.oIJl IloJ +<1'011,. (UJ ••1 I a J n: +1I-(p£o.(ol I. JcolJ J 11,.01 IIJ) ) ISV 117J U.-l.(oIJj.Of£OI•••• JJll 111 J ,/I·'D'S.·SI£of. J l-DI £0 Ib J J. (. /l vI £01.]; J'I)A (Y(J I J'1I1 (1IJ +1, 120' sr :IIS.16S-Slll'ID) 'D'·-' l£V( ,,-(YIJ; J-IIIIPY(J; j J.II (21l '(IIh' I;IS;I 'ID1;' ';' 122J .(11,. v" @default.
- W3150430274 created "2021-04-13" @default.
- W3150430274 creator A5037188422 @default.
- W3150430274 date "2010-01-01" @default.
- W3150430274 modified "2023-09-26" @default.
- W3150430274 title "Analysis of variance with APL/360" @default.
- W3150430274 cites W2023133890 @default.
- W3150430274 cites W2132921193 @default.
- W3150430274 hasPublicationYear "2010" @default.
- W3150430274 type Work @default.
- W3150430274 sameAs 3150430274 @default.
- W3150430274 citedByCount "0" @default.
- W3150430274 crossrefType "journal-article" @default.
- W3150430274 hasAuthorship W3150430274A5037188422 @default.
- W3150430274 hasConcept C105795698 @default.
- W3150430274 hasConcept C11413529 @default.
- W3150430274 hasConcept C114614502 @default.
- W3150430274 hasConcept C124101348 @default.
- W3150430274 hasConcept C134306372 @default.
- W3150430274 hasConcept C14036430 @default.
- W3150430274 hasConcept C177148314 @default.
- W3150430274 hasConcept C33676613 @default.
- W3150430274 hasConcept C33923547 @default.
- W3150430274 hasConcept C41008148 @default.
- W3150430274 hasConcept C45235069 @default.
- W3150430274 hasConcept C78458016 @default.
- W3150430274 hasConcept C86803240 @default.
- W3150430274 hasConcept C94375191 @default.
- W3150430274 hasConceptScore W3150430274C105795698 @default.
- W3150430274 hasConceptScore W3150430274C11413529 @default.
- W3150430274 hasConceptScore W3150430274C114614502 @default.
- W3150430274 hasConceptScore W3150430274C124101348 @default.
- W3150430274 hasConceptScore W3150430274C134306372 @default.
- W3150430274 hasConceptScore W3150430274C14036430 @default.
- W3150430274 hasConceptScore W3150430274C177148314 @default.
- W3150430274 hasConceptScore W3150430274C33676613 @default.
- W3150430274 hasConceptScore W3150430274C33923547 @default.
- W3150430274 hasConceptScore W3150430274C41008148 @default.
- W3150430274 hasConceptScore W3150430274C45235069 @default.
- W3150430274 hasConceptScore W3150430274C78458016 @default.
- W3150430274 hasConceptScore W3150430274C86803240 @default.
- W3150430274 hasConceptScore W3150430274C94375191 @default.
- W3150430274 hasLocation W31504302741 @default.
- W3150430274 hasOpenAccess W3150430274 @default.
- W3150430274 hasPrimaryLocation W31504302741 @default.
- W3150430274 hasRelatedWork W1537830268 @default.
- W3150430274 hasRelatedWork W1601963697 @default.
- W3150430274 hasRelatedWork W1979230156 @default.
- W3150430274 hasRelatedWork W1982869935 @default.
- W3150430274 hasRelatedWork W1989029592 @default.
- W3150430274 hasRelatedWork W2021231599 @default.
- W3150430274 hasRelatedWork W2021633292 @default.
- W3150430274 hasRelatedWork W2064380838 @default.
- W3150430274 hasRelatedWork W2065448160 @default.
- W3150430274 hasRelatedWork W2092968642 @default.
- W3150430274 hasRelatedWork W2147681309 @default.
- W3150430274 hasRelatedWork W2149697317 @default.
- W3150430274 hasRelatedWork W2518931630 @default.
- W3150430274 hasRelatedWork W2887161428 @default.
- W3150430274 hasRelatedWork W2952878124 @default.
- W3150430274 hasRelatedWork W2964284394 @default.
- W3150430274 hasRelatedWork W3013728313 @default.
- W3150430274 hasRelatedWork W3022247802 @default.
- W3150430274 hasRelatedWork W3123657750 @default.
- W3150430274 hasRelatedWork W1953814538 @default.
- W3150430274 isParatext "false" @default.
- W3150430274 isRetracted "false" @default.
- W3150430274 magId "3150430274" @default.
- W3150430274 workType "article" @default.