Matches in SemOpenAlex for { <https://semopenalex.org/work/W3150499821> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3150499821 endingPage "204" @default.
- W3150499821 startingPage "196" @default.
- W3150499821 abstract "In this paper, the problem of de-noising of an image contaminated with Additive White Gaussian Noise (AWGN) is studied. This subject is an open problem in signal processing for more than 50 years. Local methods suggested in recent years, have obtained better results than global methods. However by more intelligent training in such a way that first, important data is more effective for training, second, clustering in such way that training blocks lie in low-rank subspaces, we can design a dictionary applicable for image de-noising and obtain results near the state of the art local methods. In the present paper, we suggest a method based on global clustering of image constructing blocks. As the type of clustering plays an important role in clustering-based de-noising methods, we address two questions about the clustering. The first, which parts of the data should be considered for clustering? and the second, what data clustering method is suitable for de-noising.? Then clustering is exploited to learn an over complete dictionary. By obtaining sparse decomposition of the noisy image blocks in terms of the dictionary atoms, the de-noised version is achieved. In addition to our framework, 7 popular dictionary learning methods are simulated and compared. The results are compared based on two major factors: (1) de-noising performance and (2) execution time. Experimental results show that our dictionary learning framework outperforms its competitors in terms of both factors." @default.
- W3150499821 created "2021-04-13" @default.
- W3150499821 creator A5001931776 @default.
- W3150499821 creator A5038914007 @default.
- W3150499821 creator A5053219011 @default.
- W3150499821 date "2014-12-01" @default.
- W3150499821 modified "2023-10-12" @default.
- W3150499821 title "A Study on Clustering for Clustering Based Image De-Noising" @default.
- W3150499821 cites W1634005169 @default.
- W3150499821 cites W1983700440 @default.
- W3150499821 cites W2006262236 @default.
- W3150499821 cites W2045079989 @default.
- W3150499821 cites W2056370875 @default.
- W3150499821 cites W2067877017 @default.
- W3150499821 cites W2081895856 @default.
- W3150499821 cites W2083799719 @default.
- W3150499821 cites W2085692415 @default.
- W3150499821 cites W2104154760 @default.
- W3150499821 cites W2108661534 @default.
- W3150499821 cites W2116857329 @default.
- W3150499821 cites W2119634769 @default.
- W3150499821 cites W2143131425 @default.
- W3150499821 cites W2153663612 @default.
- W3150499821 cites W2161037052 @default.
- W3150499821 cites W2266447120 @default.
- W3150499821 cites W2536599074 @default.
- W3150499821 doi "https://doi.org/10.7508/jist.2014.04.001" @default.
- W3150499821 hasPublicationYear "2014" @default.
- W3150499821 type Work @default.
- W3150499821 sameAs 3150499821 @default.
- W3150499821 citedByCount "0" @default.
- W3150499821 crossrefType "journal-article" @default.
- W3150499821 hasAuthorship W3150499821A5001931776 @default.
- W3150499821 hasAuthorship W3150499821A5038914007 @default.
- W3150499821 hasAuthorship W3150499821A5053219011 @default.
- W3150499821 hasConcept C105611402 @default.
- W3150499821 hasConcept C115961682 @default.
- W3150499821 hasConcept C124101348 @default.
- W3150499821 hasConcept C144817290 @default.
- W3150499821 hasConcept C153180895 @default.
- W3150499821 hasConcept C154771677 @default.
- W3150499821 hasConcept C154945302 @default.
- W3150499821 hasConcept C17212007 @default.
- W3150499821 hasConcept C33704608 @default.
- W3150499821 hasConcept C41008148 @default.
- W3150499821 hasConcept C73555534 @default.
- W3150499821 hasConcept C94641424 @default.
- W3150499821 hasConceptScore W3150499821C105611402 @default.
- W3150499821 hasConceptScore W3150499821C115961682 @default.
- W3150499821 hasConceptScore W3150499821C124101348 @default.
- W3150499821 hasConceptScore W3150499821C144817290 @default.
- W3150499821 hasConceptScore W3150499821C153180895 @default.
- W3150499821 hasConceptScore W3150499821C154771677 @default.
- W3150499821 hasConceptScore W3150499821C154945302 @default.
- W3150499821 hasConceptScore W3150499821C17212007 @default.
- W3150499821 hasConceptScore W3150499821C33704608 @default.
- W3150499821 hasConceptScore W3150499821C41008148 @default.
- W3150499821 hasConceptScore W3150499821C73555534 @default.
- W3150499821 hasConceptScore W3150499821C94641424 @default.
- W3150499821 hasIssue "4" @default.
- W3150499821 hasLocation W31504998211 @default.
- W3150499821 hasOpenAccess W3150499821 @default.
- W3150499821 hasPrimaryLocation W31504998211 @default.
- W3150499821 hasRelatedWork W1549135756 @default.
- W3150499821 hasRelatedWork W1978895829 @default.
- W3150499821 hasRelatedWork W1998433034 @default.
- W3150499821 hasRelatedWork W2045079989 @default.
- W3150499821 hasRelatedWork W2047778205 @default.
- W3150499821 hasRelatedWork W2085287713 @default.
- W3150499821 hasRelatedWork W2103450852 @default.
- W3150499821 hasRelatedWork W2104114378 @default.
- W3150499821 hasRelatedWork W2136233455 @default.
- W3150499821 hasRelatedWork W2271028625 @default.
- W3150499821 hasRelatedWork W2358002591 @default.
- W3150499821 hasRelatedWork W2363794796 @default.
- W3150499821 hasRelatedWork W2391140801 @default.
- W3150499821 hasRelatedWork W2393607696 @default.
- W3150499821 hasRelatedWork W2509533530 @default.
- W3150499821 hasRelatedWork W2799253018 @default.
- W3150499821 hasRelatedWork W2887194216 @default.
- W3150499821 hasRelatedWork W2981051414 @default.
- W3150499821 hasRelatedWork W2858597803 @default.
- W3150499821 hasRelatedWork W2965751379 @default.
- W3150499821 hasVolume "2" @default.
- W3150499821 isParatext "false" @default.
- W3150499821 isRetracted "false" @default.
- W3150499821 magId "3150499821" @default.
- W3150499821 workType "article" @default.