Matches in SemOpenAlex for { <https://semopenalex.org/work/W3150593963> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3150593963 abstract "Abstract Background Intraoperative physiological monitoring generates a large quantity of time-series data that might be associated with postoperative outcomes. Using a deep learning model based on intraoperative time-series monitoring data to predict postoperative quality of recovery has not been previously reported. Methods Perioperative data from female patients having laparoscopic hysterectomy were prospectively collected. Deep learning, logistic regression, support vector machine, and random forest models were trained using different datasets and evaluated by 5-fold cross-validation. The quality of recovery on postoperative day 1 was assessed using the Quality of Recovery-15 scale. The quality of recovery was dichotomized into satisfactory if the score ≥122 and unsatisfactory if <122. Models’ discrimination was estimated using the area under the receiver operating characteristics curve (AUROC). Models’ calibration was visualized using the calibration plot and appraised by the Brier score. The SHapley Additive exPlanation (SHAP) approach was used to characterize different input features’ contributions. Results Data from 699 patients were used for modeling. When using preoperative data only, all four models exhibited poor performance (AUROC ranging from 0.65 to 0.68). The inclusion of the intraoperative intervention and/or monitoring data improved the performance of the deep leaning, logistic regression, and random forest models but not the support vector machine model. The AUROC of the deep learning model based on the intraoperative monitoring data only was 0.77 (95% CI, 0.72–0.81), which was indistinct from that based on the intraoperative intervention data only (AUROC, 0.79; 95% CI, 0.75–0.82) and from that based on the preoperative, intraoperative intervention, and monitoring data combined (AUROC, 0.81; 95% CI, 0.78–0.83). In contrast, when using the intraoperative monitoring data only, the logistic regression model had an AUROC of 0.72 (95% CI, 0.68–0.77), and the random forest model had an AUROC of 0.74 (95% CI, 0.73–0.76). The Brier score of the deep learning model based on the intraoperative monitoring data was 0.177, which was lower than that of other models. Conclusions Deep learning based on intraoperative time-series monitoring data can predict post-hysterectomy quality of recovery. The use of intraoperative monitoring data for outcome prediction warrants further investigation. Trial registration This trial (Identifier: NCT03641625 ) was registered at ClinicalTrials.gov by the principal investigator, Lingzhong Meng, on August 22, 2018." @default.
- W3150593963 created "2021-04-13" @default.
- W3150593963 creator A5025453964 @default.
- W3150593963 creator A5046597133 @default.
- W3150593963 creator A5050212520 @default.
- W3150593963 creator A5057149809 @default.
- W3150593963 creator A5073237957 @default.
- W3150593963 date "2021-04-06" @default.
- W3150593963 modified "2023-10-17" @default.
- W3150593963 title "Can a deep learning model based on intraoperative time-series monitoring data predict post-hysterectomy quality of recovery?" @default.
- W3150593963 cites W1687620054 @default.
- W3150593963 cites W1971654961 @default.
- W3150593963 cites W1985746834 @default.
- W3150593963 cites W2111796869 @default.
- W3150593963 cites W2131165083 @default.
- W3150593963 cites W2134812821 @default.
- W3150593963 cites W2295107390 @default.
- W3150593963 cites W2562251009 @default.
- W3150593963 cites W2573978544 @default.
- W3150593963 cites W2762658547 @default.
- W3150593963 cites W2791118598 @default.
- W3150593963 cites W2800777678 @default.
- W3150593963 cites W2803000548 @default.
- W3150593963 cites W2892035503 @default.
- W3150593963 cites W2896347269 @default.
- W3150593963 cites W2907638671 @default.
- W3150593963 cites W2972320421 @default.
- W3150593963 cites W2976003057 @default.
- W3150593963 cites W3018864466 @default.
- W3150593963 doi "https://doi.org/10.1186/s13741-021-00178-4" @default.
- W3150593963 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8022389" @default.
- W3150593963 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33820562" @default.
- W3150593963 hasPublicationYear "2021" @default.
- W3150593963 type Work @default.
- W3150593963 sameAs 3150593963 @default.
- W3150593963 citedByCount "3" @default.
- W3150593963 countsByYear W31505939632022 @default.
- W3150593963 crossrefType "journal-article" @default.
- W3150593963 hasAuthorship W3150593963A5025453964 @default.
- W3150593963 hasAuthorship W3150593963A5046597133 @default.
- W3150593963 hasAuthorship W3150593963A5050212520 @default.
- W3150593963 hasAuthorship W3150593963A5057149809 @default.
- W3150593963 hasAuthorship W3150593963A5073237957 @default.
- W3150593963 hasBestOaLocation W31505939631 @default.
- W3150593963 hasConcept C105795698 @default.
- W3150593963 hasConcept C108583219 @default.
- W3150593963 hasConcept C119857082 @default.
- W3150593963 hasConcept C12267149 @default.
- W3150593963 hasConcept C141071460 @default.
- W3150593963 hasConcept C151956035 @default.
- W3150593963 hasConcept C154945302 @default.
- W3150593963 hasConcept C165838908 @default.
- W3150593963 hasConcept C169258074 @default.
- W3150593963 hasConcept C31174226 @default.
- W3150593963 hasConcept C33923547 @default.
- W3150593963 hasConcept C35405484 @default.
- W3150593963 hasConcept C41008148 @default.
- W3150593963 hasConcept C58471807 @default.
- W3150593963 hasConcept C71924100 @default.
- W3150593963 hasConceptScore W3150593963C105795698 @default.
- W3150593963 hasConceptScore W3150593963C108583219 @default.
- W3150593963 hasConceptScore W3150593963C119857082 @default.
- W3150593963 hasConceptScore W3150593963C12267149 @default.
- W3150593963 hasConceptScore W3150593963C141071460 @default.
- W3150593963 hasConceptScore W3150593963C151956035 @default.
- W3150593963 hasConceptScore W3150593963C154945302 @default.
- W3150593963 hasConceptScore W3150593963C165838908 @default.
- W3150593963 hasConceptScore W3150593963C169258074 @default.
- W3150593963 hasConceptScore W3150593963C31174226 @default.
- W3150593963 hasConceptScore W3150593963C33923547 @default.
- W3150593963 hasConceptScore W3150593963C35405484 @default.
- W3150593963 hasConceptScore W3150593963C41008148 @default.
- W3150593963 hasConceptScore W3150593963C58471807 @default.
- W3150593963 hasConceptScore W3150593963C71924100 @default.
- W3150593963 hasIssue "1" @default.
- W3150593963 hasLocation W31505939631 @default.
- W3150593963 hasLocation W31505939632 @default.
- W3150593963 hasOpenAccess W3150593963 @default.
- W3150593963 hasPrimaryLocation W31505939631 @default.
- W3150593963 hasRelatedWork W3195168932 @default.
- W3150593963 hasRelatedWork W4246246790 @default.
- W3150593963 hasRelatedWork W4281616679 @default.
- W3150593963 hasRelatedWork W4285237370 @default.
- W3150593963 hasRelatedWork W4311106074 @default.
- W3150593963 hasRelatedWork W4312707991 @default.
- W3150593963 hasRelatedWork W4321636153 @default.
- W3150593963 hasRelatedWork W4322727400 @default.
- W3150593963 hasRelatedWork W4383535405 @default.
- W3150593963 hasRelatedWork W4384828018 @default.
- W3150593963 hasVolume "10" @default.
- W3150593963 isParatext "false" @default.
- W3150593963 isRetracted "false" @default.
- W3150593963 magId "3150593963" @default.
- W3150593963 workType "article" @default.