Matches in SemOpenAlex for { <https://semopenalex.org/work/W3150643742> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3150643742 abstract "The installed amount of renewable energy has expanded massively in recent years. Wave energy, with its high capacity factors has great potential to complement established sources of solar and wind energy. This study explores the problem of optimising the layout of advanced, three-tether wave energy converters in a size-constrained farm in a numerically modelled ocean environment. Simulating and computing the complicated hydrodynamic interactions in wave farms can be computationally costly, which limits optimisation methods to have just a few thousand evaluations. For dealing with this expensive optimisation problem, an adaptive neuro-surrogate optimisation (ANSO) method is proposed that consists of a surrogate Recurrent Neural Network (RNN) model trained with a very limited number of observations. This model is coupled with a fast meta-heuristic optimiser for adjusting the model's hyper-parameters. The trained model is applied using a greedy local search with a backtracking optimisation strategy. For evaluating the performance of the proposed approach, some of the more popular and successful Evolutionary Algorithms (EAs) are compared in four real wave scenarios (Sydney, Perth, Adelaide and Tasmania). Experimental results show that the adaptive neuro model is competitive with other optimisation methods in terms of total harnessed power output and faster in terms of total computational costs." @default.
- W3150643742 created "2021-04-13" @default.
- W3150643742 creator A5014553511 @default.
- W3150643742 creator A5023433917 @default.
- W3150643742 creator A5024071040 @default.
- W3150643742 creator A5037609293 @default.
- W3150643742 creator A5047916660 @default.
- W3150643742 creator A5048137950 @default.
- W3150643742 creator A5052925986 @default.
- W3150643742 creator A5077410502 @default.
- W3150643742 creator A5081369222 @default.
- W3150643742 creator A5089111760 @default.
- W3150643742 date "2019-07-06" @default.
- W3150643742 modified "2023-09-27" @default.
- W3150643742 title "Adaptive Neuro-Surrogate-Based Optimisation Method for Wave Energy Converters Placement Optimisation" @default.
- W3150643742 hasPublicationYear "2019" @default.
- W3150643742 type Work @default.
- W3150643742 sameAs 3150643742 @default.
- W3150643742 citedByCount "0" @default.
- W3150643742 crossrefType "posted-content" @default.
- W3150643742 hasAuthorship W3150643742A5014553511 @default.
- W3150643742 hasAuthorship W3150643742A5023433917 @default.
- W3150643742 hasAuthorship W3150643742A5024071040 @default.
- W3150643742 hasAuthorship W3150643742A5037609293 @default.
- W3150643742 hasAuthorship W3150643742A5047916660 @default.
- W3150643742 hasAuthorship W3150643742A5048137950 @default.
- W3150643742 hasAuthorship W3150643742A5052925986 @default.
- W3150643742 hasAuthorship W3150643742A5077410502 @default.
- W3150643742 hasAuthorship W3150643742A5081369222 @default.
- W3150643742 hasAuthorship W3150643742A5089111760 @default.
- W3150643742 hasConcept C11413529 @default.
- W3150643742 hasConcept C119599485 @default.
- W3150643742 hasConcept C119857082 @default.
- W3150643742 hasConcept C126255220 @default.
- W3150643742 hasConcept C127413603 @default.
- W3150643742 hasConcept C131675550 @default.
- W3150643742 hasConcept C154945302 @default.
- W3150643742 hasConcept C156884757 @default.
- W3150643742 hasConcept C173801870 @default.
- W3150643742 hasConcept C188573790 @default.
- W3150643742 hasConcept C33923547 @default.
- W3150643742 hasConcept C41008148 @default.
- W3150643742 hasConcept C50644808 @default.
- W3150643742 hasConceptScore W3150643742C11413529 @default.
- W3150643742 hasConceptScore W3150643742C119599485 @default.
- W3150643742 hasConceptScore W3150643742C119857082 @default.
- W3150643742 hasConceptScore W3150643742C126255220 @default.
- W3150643742 hasConceptScore W3150643742C127413603 @default.
- W3150643742 hasConceptScore W3150643742C131675550 @default.
- W3150643742 hasConceptScore W3150643742C154945302 @default.
- W3150643742 hasConceptScore W3150643742C156884757 @default.
- W3150643742 hasConceptScore W3150643742C173801870 @default.
- W3150643742 hasConceptScore W3150643742C188573790 @default.
- W3150643742 hasConceptScore W3150643742C33923547 @default.
- W3150643742 hasConceptScore W3150643742C41008148 @default.
- W3150643742 hasConceptScore W3150643742C50644808 @default.
- W3150643742 hasLocation W31506437421 @default.
- W3150643742 hasOpenAccess W3150643742 @default.
- W3150643742 hasPrimaryLocation W31506437421 @default.
- W3150643742 hasRelatedWork W1509756746 @default.
- W3150643742 hasRelatedWork W1521668550 @default.
- W3150643742 hasRelatedWork W2105890576 @default.
- W3150643742 hasRelatedWork W2114941440 @default.
- W3150643742 hasRelatedWork W2169385073 @default.
- W3150643742 hasRelatedWork W2289879240 @default.
- W3150643742 hasRelatedWork W2556669151 @default.
- W3150643742 hasRelatedWork W2922007714 @default.
- W3150643742 hasRelatedWork W2933085505 @default.
- W3150643742 hasRelatedWork W2967645539 @default.
- W3150643742 hasRelatedWork W2991500030 @default.
- W3150643742 hasRelatedWork W3023287658 @default.
- W3150643742 hasRelatedWork W3024767046 @default.
- W3150643742 hasRelatedWork W3038592985 @default.
- W3150643742 hasRelatedWork W3043438787 @default.
- W3150643742 hasRelatedWork W3099650626 @default.
- W3150643742 hasRelatedWork W3100221876 @default.
- W3150643742 hasRelatedWork W3125643987 @default.
- W3150643742 hasRelatedWork W3155564730 @default.
- W3150643742 hasRelatedWork W3209673031 @default.
- W3150643742 isParatext "false" @default.
- W3150643742 isRetracted "false" @default.
- W3150643742 magId "3150643742" @default.
- W3150643742 workType "article" @default.