Matches in SemOpenAlex for { <https://semopenalex.org/work/W3150666581> ?p ?o ?g. }
- W3150666581 endingPage "045011" @default.
- W3150666581 startingPage "045011" @default.
- W3150666581 abstract "Abstract Compressed sensing can decrease scanning transmission electron microscopy electron dose and scan time with minimal information loss. Traditionally, sparse scans used in compressed sensing sample a static set of probing locations. However, dynamic scans that adapt to specimens are expected to be able to match or surpass the performance of static scans as static scans are a subset of possible dynamic scans. Thus, we present a prototype for a contiguous sparse scan system that piecewise adapts scan paths to specimens as they are scanned. Sampling directions for scan segments are chosen by a recurrent neural network (RNN) based on previously observed scan segments. The RNN is trained by reinforcement learning to cooperate with a feedforward convolutional neural network that completes the sparse scans. This paper presents our learning policy, experiments, and example partial scans, and discusses future research directions. Source code, pretrained models, and training data is openly accessible at https://github.com/Jeffrey-Ede/adaptive-scans ." @default.
- W3150666581 created "2021-04-13" @default.
- W3150666581 creator A5001453396 @default.
- W3150666581 date "2021-07-19" @default.
- W3150666581 modified "2023-09-26" @default.
- W3150666581 title "Adaptive partial scanning transmission electron microscopy with reinforcement learning" @default.
- W3150666581 cites W2003160173 @default.
- W3150666581 cites W2013770351 @default.
- W3150666581 cites W2017957151 @default.
- W3150666581 cites W2044279302 @default.
- W3150666581 cites W2061926706 @default.
- W3150666581 cites W2064675550 @default.
- W3150666581 cites W2071284784 @default.
- W3150666581 cites W2117274978 @default.
- W3150666581 cites W2145339207 @default.
- W3150666581 cites W2147233946 @default.
- W3150666581 cites W2150355110 @default.
- W3150666581 cites W2157331557 @default.
- W3150666581 cites W2168399082 @default.
- W3150666581 cites W2170930585 @default.
- W3150666581 cites W2192929716 @default.
- W3150666581 cites W2253093986 @default.
- W3150666581 cites W2422403945 @default.
- W3150666581 cites W2486196027 @default.
- W3150666581 cites W2530887700 @default.
- W3150666581 cites W2558155811 @default.
- W3150666581 cites W2571005879 @default.
- W3150666581 cites W2593919340 @default.
- W3150666581 cites W2603433416 @default.
- W3150666581 cites W2754132561 @default.
- W3150666581 cites W2756130528 @default.
- W3150666581 cites W2758781421 @default.
- W3150666581 cites W2809546903 @default.
- W3150666581 cites W2810374434 @default.
- W3150666581 cites W2914540228 @default.
- W3150666581 cites W2952962542 @default.
- W3150666581 cites W2959334635 @default.
- W3150666581 cites W2963059228 @default.
- W3150666581 cites W2965746167 @default.
- W3150666581 cites W2969341539 @default.
- W3150666581 cites W2975762994 @default.
- W3150666581 cites W2979417040 @default.
- W3150666581 cites W2998102890 @default.
- W3150666581 cites W3006913750 @default.
- W3150666581 cites W3011762972 @default.
- W3150666581 cites W3098900881 @default.
- W3150666581 cites W3100302110 @default.
- W3150666581 cites W3101356658 @default.
- W3150666581 cites W3103105237 @default.
- W3150666581 cites W3105958861 @default.
- W3150666581 cites W3175956061 @default.
- W3150666581 cites W4250459844 @default.
- W3150666581 doi "https://doi.org/10.1088/2632-2153/abf5b6" @default.
- W3150666581 hasPublicationYear "2021" @default.
- W3150666581 type Work @default.
- W3150666581 sameAs 3150666581 @default.
- W3150666581 citedByCount "4" @default.
- W3150666581 countsByYear W31506665812022 @default.
- W3150666581 crossrefType "journal-article" @default.
- W3150666581 hasAuthorship W3150666581A5001453396 @default.
- W3150666581 hasBestOaLocation W31506665811 @default.
- W3150666581 hasConcept C124851039 @default.
- W3150666581 hasConcept C127413603 @default.
- W3150666581 hasConcept C133731056 @default.
- W3150666581 hasConcept C147168706 @default.
- W3150666581 hasConcept C153180895 @default.
- W3150666581 hasConcept C154945302 @default.
- W3150666581 hasConcept C177264268 @default.
- W3150666581 hasConcept C199360897 @default.
- W3150666581 hasConcept C2776760102 @default.
- W3150666581 hasConcept C31972630 @default.
- W3150666581 hasConcept C38858127 @default.
- W3150666581 hasConcept C41008148 @default.
- W3150666581 hasConcept C50644808 @default.
- W3150666581 hasConcept C761482 @default.
- W3150666581 hasConcept C76155785 @default.
- W3150666581 hasConcept C81363708 @default.
- W3150666581 hasConcept C97541855 @default.
- W3150666581 hasConceptScore W3150666581C124851039 @default.
- W3150666581 hasConceptScore W3150666581C127413603 @default.
- W3150666581 hasConceptScore W3150666581C133731056 @default.
- W3150666581 hasConceptScore W3150666581C147168706 @default.
- W3150666581 hasConceptScore W3150666581C153180895 @default.
- W3150666581 hasConceptScore W3150666581C154945302 @default.
- W3150666581 hasConceptScore W3150666581C177264268 @default.
- W3150666581 hasConceptScore W3150666581C199360897 @default.
- W3150666581 hasConceptScore W3150666581C2776760102 @default.
- W3150666581 hasConceptScore W3150666581C31972630 @default.
- W3150666581 hasConceptScore W3150666581C38858127 @default.
- W3150666581 hasConceptScore W3150666581C41008148 @default.
- W3150666581 hasConceptScore W3150666581C50644808 @default.
- W3150666581 hasConceptScore W3150666581C761482 @default.
- W3150666581 hasConceptScore W3150666581C76155785 @default.
- W3150666581 hasConceptScore W3150666581C81363708 @default.
- W3150666581 hasConceptScore W3150666581C97541855 @default.
- W3150666581 hasFunder F4320334627 @default.
- W3150666581 hasIssue "4" @default.
- W3150666581 hasLocation W31506665811 @default.